
Iwashita lab.

Takeshi Iwashita
(Kyoto Univ. / Hokkaido Univ.)

1



Iwashita lab.

• Mixed precision computing
1. Development of mixed precision GMRES(m) solver

• The solver is based on the iterative refinement method. An m-step 
FP32 GMRES solver is used for the inner iteration. In the outer 
iteration, the residual vector is calculated using FP64 and the 
convergence of the relative residual norm is checked. Thus the 
accuracy of the solution is the same as that of a conventional FP64 
GMRES solver.
• Yingqi Zhao, Takeshi Fukaya, Linjie Zhang, Takeshi Iwashita: 

Numerical Investigation into the Mixed Precision GMRES(m) Method Using 
FP64 and FP32. J. Inf. Process. 30: 525-537 (2022)

2. Investigation of mixed precision IR-based Bi-CGSTAB solver
• Methods based on the Lanczos principle look unsuitable for the inner 

solver of the iterative refinement method. However, we implemented 
it and got some good results.
• To be published
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3. Introduction of mixed precision computing to H-matrices
• A part of low-rank submatrices are expressed using lower precision 

data. The proposed method was evaluated in a BEM analysis for 
electric field.
• Rise Ooi, Takeshi Iwashita, Takeshi Fukaya, Akihiro Ida, Rio Yokota: 

Effect of Mixed Precision Computing on H-Matrix Vector Multiplication in 
BEM Analysis. HPC Asia 2020: 92-101.

4. Integer arithmetic based GMRES solver
• An integer arithmetic based preconditioned GMRES solver was 

developed. The solver is based on the iterative refinement method 
and only integer arithmetic are used in the inner iteration.
• Takeshi Iwashita, Kengo Suzuki, Takeshi Fukaya: An Integer 

Arithmetic-Based Sparse Linear Solver Using a GMRES Method and 
Iterative Refinement. ScalA@SC 2020: 1-8.
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• ILU-type preconditioning techniques effectively using 
SIMD vectorization
1. Proposal of hierarchical block multi-color ordering

• The proposed parallel ordering method attains the same 
convergence rate as the block multi-color ordering method, while 
the forward and backward substitutions are efficiently parallelized 
and vectorized. (The preconditioning matrix involves diagonal 
matrices.)
• Takeshi Iwashita, Senxi Li, Takeshi Fukaya: Hierarchical block multi-

color ordering: a new parallel ordering method for vectorization and 
parallelization of the sparse triangular solver in the ICCG method. CCF 
Trans. High Perform. Comput. 2(2): 84-97 (2020)
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2. Proposal of ILUB preconditioning
• A new fill-in strategy was proposed for ILU preconditioning. Nonzero 

blocks are defined and all fill-ins in a nonzero block are permitted in 
ILU factorization. Then, the forward and backward substitutions 
consist of small dense matrix operations which is efficiently 
vectorized.
• Kengo Suzuki, Takeshi Fukaya, Takeshi Iwashita: A novel ILU 

preconditioning method with a block structure suitable for SIMD 
vectorization. J. Comput. Appl. Math. 419: 114687 (2023)
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• GPU oriented preconditioners
1. Proposal of a new AINV preconditioner

• A modification of the AIV algorithm was presented. A new 
approximation method for the preconditioner matrix greatly reduces 
the preconditioner setup time with preserving the preconditioning 
effect.
• Kengo Suzuki, Takeshi Fukaya, Takeshi Iwashita: A New AINV 

Preconditioner for the CG Method in Hybrid CPU-GPU Computing 
Environment. J. Inf. Process. 30: 755-765 (2022) 
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• Aim of the research: Speedup of the convergence of a 
sparse linear iterative solver

• Subspace correction method
• J. Xu, “Iterative Methods by Space Decomposition and Subspace Correction”, SIAM Rev., Vol. 

34, 1992.

• Deflation method
• R. A. Nicolaides, “Deflation of conjugate gradients with application to boundary value 

problems”, SIAM J. Numer. Anal., Vol. 24, 1987.
• Y. Saad et al., “A deflated version of the conjugate gradient algorithm”, SIAM J. Sci. Comput., 

Vol. 21, 2000.

• These techniques can collaborate with standard 
preconditioning techniques and use a specific subspace.
• It is important to set an appropriate subspace.
• Here we consider a linear system of equations having a S.P.D. matrix. In many 

practical simulations, a few isolated eigenvalues with very small magnitudes 
cause a convergence problem. If we identify the eigenspaces corresponding to 
these eigenvalues, we can accelerate the convergence of the iterative (CG) 
solver.  
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• The way to obtain (approximate) eigenvectors with 
small eigenvalues
• Based on knowledge of problems

• Multigrid method, finite elements with high aspect ratio

• In this research, we focus on algebraic  auxiliary matrix 
construction.
• Reduction of programming cost
• (Hidden) unapparent characteristics of a problem may be exploited. 

• We focus on a situation in which a series of linear 
systems with an identical or similar coefficient matrix 
are solved.
• In practical simulations, these linear systems often arise.

• Time dependent calculations, non-linear analysis (Newton method)
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• Problem:

• Proposed method
• In the first solution step for , the following 4 steps 

are performed. For simple explanation, let and 
denoted by and .
1. Sampling of approximation vectors
2. Calculation of error vectors
3. Rayleigh-Ritz method
4. Construction of auxiliary matrix

The right hand side vector bk
are functions of x1, x2,…,xk-1.
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❶ Sampling of approximation vectors
◦ Number of samples:
◦ Sampling is done with a certain interval
◦ Obtain 

❷ Calculation of error vectors
◦ After the solution process completes, 

the error vectors corresponding to the 
sampled approximation vectors are 
calculated: .

◦ Apply the Gram-Schmidt process to the 
vectors and get orthonormal basis 
vectors: 

Sampling

(𝑠 = 1,… ,𝑚)

𝟏
𝟐

𝟑

𝟒
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❸ Rayleigh-Ritz method
◦ Solve an eigenvalue problem: 
◦ Select Ritz vectors with small Ritz values less than 

 should be much less than 1 when the coefficient matrix 
is diagonally (or properly) scaled.

 : the number of selected Ritz vectors
 Selected Ritz vectors: 

❹ Auxiliary matrix
◦
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 We used a node of Fujitsu CX2550 (2 Xeon Skylake processors) 
 We tested three solvers

◦ ICCG
◦ ES-SC-ICCG: additive Schwarz SC and IC preconditioned CG solver
◦ ES-D-ICCG: deflated ICCG solver

 We also tested parallelized versions of three solvers
◦ Block Jacobi IC method is used for the parallelization of IC preconditioning

 The convergence criterion: relative residual norm less than 
 Test problems: 30 matrices from SuiteSparse Matrix collection

◦ We selected 30 largest datasets of symmetric positive-definite matrices.
 We solved a linear system 6 times. In / after the first solution step, 

vector sampling and the auxiliary matrix construction are performed. 
Two types of right-hand side vectors are used: (1) a vector of ones 
and (2) a random vector.

 The number of sampling vectors, : 20
 The threshold for Ritz vectors, : , , 
 The number of threads in tests for parallel solvers: 40

Using the 
proposed 
technique
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 Significant convergence acceleration was achieved.
 When we use a larger , which typically increases the number of selected Ritz 

vector, , reduction in the number of iterations is enlarged.
 Although the mechanism of convergence acceleration is different between 

subspace correction and deflation, the convergence behaviors are mostly identical. 
(This phenomenon was observed in all datasets.) It implies that the difference of 
both methods are marginally when the used subspace is identical. 

Results of tests using random vectors (dataset: Hook_1498)

ES-SC-ICCG ES-D-ICCG

Convergence acceleration Convergence acceleration
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 The convergence rate was doubled for 20 out of 30 datasets.
◦ When a vector of ones was used, the improvement in convergence rate was more significant.

 For 12 datasets, the best result was obtained when (# sampled vectors). 
For these datasets, the increase in possibly improve the performance.

Results of tests using random vectors
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 The time to solution was reduced for 28 out of 30 datasets using the proposed 
technique.

 For 12 datasets, the best result was obtained when (# sampled vectors). 
For these datasets, the increase in possibly improve the performance.

Results of tests using random vectors
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• We newly introduce an algebraic auxiliary matrix (subspace) 
construction method for subspace correction and deflation 
based on error vector sampling in a series of linear systems.

• In the method, limited number of approximation vectors are 
preserved. The error vectors are calculated after the solution 
step finishes. The auxiliary matrix is constructed using these 
error vectors.

• Numerical tests using matrices from SuiteSparse confirm 
that the subspace correction preconditioning and deflation 
using the proposed technique accelerate the convergence 
and the solution of a preconditioned CG solver.

• Numerical test also indicates that the proposed method can 
be used for the condition number estimation.
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 Basic concept
◦ T. Iwashita, S. Kawaguchi, T. Mifune, and T. Matsuo, Automatic mapping 

operator construction for subspace correction method to solve a series of linear 
systems,  JSIAM Letters, vol. 9, pp. 25-28, 2017.

 Preliminary analysis on computational electromagnetics
◦ T. Iwashita, S. Kawaguchi, T. Mifune, and T. Matsuo, Acceleration of Transient 

Non-Linear Electromagnetic Field Analyses Using an Automated Subspace 
Correction Method, IEEE Trans. Magn., vol. 55, pp. 1-4, 2019.

 Regular paper
◦ T. Iwashita, K. Ikehara, T. Fukaya, and T. Mifune, Convergence acceleration of 

preconditioned conjugate gradient solver based on error vector sampling for a 
sequence of linear systems,  Numer. Linear Algebra Appl. (2023), e2512. 
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We will welcome your visit to Hokkaido & Kyoto Univ. 
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