Fast Prediction Methods for Fluid Simulation Results Using Deep Neural Networks

Takashi Shimokawabe

Information Technology Center, The University of Tokyo

45th ASE Seminar (Advanced Supercomputing Environment): International Workshop on "Integration of Simulation/Data/Learning and Beyond"

Our group aim: Accelerating MD/CFD by DL

Computational Fluid Dynamics

CNN prediction

CFD Simulations

Molecular Dynamics

GNN prediction

MD Simulations

16:35 -	Hayato Shiba (Online) (University of Hyogo)
16:50	Deep learning of simulated glassy dynamics

Target: Computational Fluid Dynamics

Computational cost of computational fluid dynamics is relatively high.

Computational domain

Stencil computation s

Fast prediction of CFD simulation results by DNN

Topic1: Steady flow

■Steady flow

• The fluid flows along the x axis around objects.

LBM (Lattice Boltzmann method) simulation results

- D2Q9 model (9 variables is used for discrete velocity)
- Re = 20,
- Region size: 256 x 128 (clipped from 1024 x 1024)
- 6 types of object shapes:
 - polygons (number of angles: 3-7)
 - cylinders.

Input data: 256 x 128 (clipped)

- Training: 14515
- Validation: 1613

Singed distance function (SDF)

SDF represents

- the surface of the object as zero.
- the outside of the object as a positive distance.
- the inside of the object as a negative distance.

A universal representation for different geometry shapes and works efficiently with neural networks

Network Architecture and Training

Encoding part Decoding part

A modified version of the network architecture proposed in Guo et al. "Convolutional Neural Networks for Steady Flow Approximation", 2016

Prediction results for single domain

LBM Ground truth

CNN Prediction

120 -10

Err = CNN - LBM

Prediction results for a complex shape

CNN Prediction

• **Computation time**... LBM (82,000steps) \rightarrow 41.1 sec $\$ CNN prediction \rightarrow 0.6 sec

 \Rightarrow CNN prediction has achieved high accuracy with significant reduction in calculation time.

Prediction by CNN with boundary exchange

- The network model trained for a single domain is applied to the decomposed subdomains to predict the simulation results in each subdomain.
- In order to maintain consistency between values in the subdomains, boundary exchange between neighbor subdomains is performed.
- CNN and boundary exchange are performed iteratively until values converge.
- This method has no limitation for device (GPU) capacity.

aliatad waardta reainer ONIN with la

Domain_size : 748 x 364 (9 decomposed subdomains) 200 400 600 0 200 400 600 Mean-error 35.89 715-1.5 -1.0 -0.5 0.0 0.5 1.0 -1.5-1.0-0.50.0 0.5 1.5 1.0 -1.5-1.0-0.50.0 0.5 1.0 1.5 1.5 Comp. time : 3.82 s

Topic2: Time dependent flow

3D CNN prediction of time dependent flows

• 2 dimensions in space and 1 dimension in time : x, y, t \rightarrow 3D CNN

Input and output

- Input: 3 frames (t0, ..., t0+200) at 100 step intervals in the LBM simulation
- Output: Predicts the next 3 frames (t0+300, ..., t0+500)

Network structure to predict time dependent flow

Input:

discrete velocity distribution function Singed distance function (geometry shapes) Output:

discrete velocity distribution function

- Encoder-decoder type of convolution and deconvolution layers in 3 dim of x, y, t
- Activation function: tanh
- Skip connections (used in U-net, etc.)
- Normalization of input/output data
- Loss function based on collision process in LBM

Lattice Boltzmann Method

A Discrete-velocity Boltzmann equation $f_i(x + c_i\Delta t, t + \Delta t) = f_i(x, t) - \frac{1}{\tau}(f_i(x, t) - f_i^{eq}(x, t)) + F_i$ streaming collision forcing term

Streaming step

 f_i : discrete velocity distribution function

c_i : discrete velocity	velocity	time-integration (n $ ightarrow$ $*$)
D3019	(0, 0, 0)	$f_0^*(x,y,z) = f_0^n(x,y,z)$
discrete velocity	(c,0,0)	$f_1^*(x,y,z) = f_1^n(x - c\Delta t,y,z)$
	(-c,0,0)	$f_2^*(x,y,z) = f_2^n(x + c\Delta t, y, z)$
16	(0,c,0)	$f_3^*(x,y,z)=f_3^n(x,y-c\Delta t,z)$
2 8 3 7	(0,0,a)	$f^*(x,y) = f^n(x,y,y) = (A + A)$
10 4 9 9	(0, 0, c)	$J_5(x, y, z) = J_5(x, y, z - c\Delta t)$
1	(c,c,0)	$f_7^*(x,y,z) = f_7^n(x - c\Delta t, y - c\Delta t, z)$

14

Predicts large simulation results

- Predictions are needed for regions beyond the training size
- Apply inference patchily over the entire computational domain
- Apply inference in an overlapping regions

Prediction with multiple applies of CNN inference

Prediction of long time evolution by CNN

 Predicts further frames ahead by using the CNN prediction result as the next input

LBM Ground truth

800 1000

0.5

1.0

CNN Prediction

LBM Ground truth

0.0

v (icnt = 15000)

CNN Prediction

Conclusion

We have developed deep learning fast prediction methods for steady/unsteady flow.

Steady flow

- Predicting simulation results on large domain using CNN with boundary exchange.
- The proposed method has no limitation for device (GPU) capacity.

Time dependent flow (unsteady flow)

- Predicting simulation flow using 3D CNN.
- By applying the CNN multiple times, long time predictions can be made.
- Applied patchily, predictions can be made for regions beyond the size of the training data.