
Low/Adaptive Precision Computation in

ICCG solver for ill-conditioned problem

Masatoshi Kawai

Nagoya University, ITC

International Workshop on “Integration of Simulation/Data/Learning and Beyond”

45thASE Seminar (Advanced Supercomputing Environment)

Nov 29, 2023, Kashiwa, Japan & Online

Outline

2

1. Objective

2. Low/Adaptive precisions

3. Storage format

4. Numerical evaluations

5. Conclusion

Objective

3

The effectiveness of the low/adaptive precisions are discussed in the field of deep learning, mainly.

Considering the effectiveness of low/adaptive precision on ICCG method.

If targeted data can be expressed in lower precision

Use of lower precision reduces execution time

Because of improving an effectiveness of a SIMDization or reducing amount of memory transfer.

Background

As same as practical simulations,

◼ The use of lower precision reduces the execution time.

◼ FP21 (adaptive precision) is evaluated on the seismic simulation on a GPU*1.

In this study, we evaluate the effectiveness of low/adaptive precision with iterative method on CPUs.

◼ ICCG is one of the most famous iterative method which require high accuracy of computations.

◼ The performance of the ICCG method is determined by memory bandwidth.

*1 T. Ichimura et al., "A Fast Scalable Implicit Solver for Nonlinear Time-Evolution Earthquake City Problem on Low-Ordered Unstructured Finite Elements with

Artificial Intelligence and Transprecision Computing," SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, 2018,

pp. 627-637

Data formats

4

Considering following data formats

Use FP21 and FP42 reduces data transfer between memory and CPU to 2/3 compared with FP32

and FP64.

For computing FP21 and FP42, it require data casting because of unsupported by FPUs.

FP64

FP32

FP21

FP16

sign 1bit
exp 11bits frac 52bits

frac 23bitsexp 8bits

exp 8bits frac 12bits

exp 5bits frac 10bits

FP42

exp 11bits frac 30bits

Adaptive precision

(Not standardized by IEEE754)

Expressive ability of each data format

5

Wider data format have a higher expressive ability
It has strong impact on exponent part, especially.

Formats
Significand :

Number of decimal digits

Exponent :

Maximum exponent in decimal

FP64 15.95 308

FP42 9.33 308

FP32 7.22 38

FP21 3.91 38

FP16 3.31 5

Expressive ability translated to a decimal number

10𝑦 = 2𝑥+1

𝑦 = 𝑥 + 1 log10 2

Expressive ability of the significand is computed as following

x+1 is produced by hidden bit

Then, y denotes number of decimal digits, and x denotes number of bits of exponent part

Type casting between FP21 and FP32

6

#define fp21x3 integer(4)

function fp32x3_to_fp21x3_f(a1, a2, a3) result(b)
implicit none
real(4), intent(in) :: a1, a2, a3
fp21x3 :: b
fp21x3 c
call cast_fp32_to_fp21x3(a1, c)
b(1) = shiftr(iand(c, int(Z'fffff800', 4)), 11)
call cast_fp32_to_fp21x3(a2, c)
c = iand(c, int(Z'fffff800', 4))
b(1) = ior(b(1), shiftl(c, 10))
b(2) = shiftr(c, 22)
call cast_fp32_to_fp21x3(a3, c)
b(2) = ior(b(2), iand(c, int(Z'fffff800', 4)))

end function fp32x3_to_fp21x3_f

subroutine cast_fp32_to_fp21x3(a, b)
implicit none
fp21x3, intent(in) :: a
fp21x3, intent(out) :: b
b = a

end subroutine cast_fp32_to_fp21x3

FP32→FP21 Left shows a Fortran pseudo code for type

casting from FP21 to FP32

Three FP21 data are stored by two 32bits integer

data format.

◼ We implement type casting without changing

internal bit information (reinterpret cast) by calling

subroutine with different argument data type.

◼ To SIMDize type casting calls, we add a link time

optimization options to compiler for facilitating

inline expansions.

◼ Storing three FP21 data to two 32bits integer is

new optimization.

⚫ In the previous study of FP21, authors are

store three FP21 data to 64bits integer.

⚫ Number of computations per one SIMD

instruction is capped by the widest data

format.

One 64bits integer : 8 data

Two 32bits integer : 16 data
per one 512bits SIMD

Storage Format

7

Width of chunk li

CRS ELL

S
o
rt

e
d
 s

c
o
p
e
 σ

C
h
u

n
k
 s

iz
e

 C

S
o

rt
e

d
 s

c
o
p
e
 σ

C
h
u
n
k
 s

iz
e
 C

Sell-C-s * (Sell-4-2)

Evaluating storage format

*Kreutzer, M., et al “A unified sparse matrix data format for efficient general sparse matrix-vector multiplication on modern processors with wide

SIMD units”, SIAM Journal on Scientific Computing,

CRS

⚫ Basic storage format for sparse

matrix

ELL

⚫ Considering a vector and SIMD

operation

⚫ Equalize number of non-zero

elements in each row

⚫ 0-padding to columns lacking non-

zero elements

Sell-C-s
⚫ Proposed considering the SIMD

operation

⚫ Shape determined from parameter

Chunk size C and scope s
⚫ Less 0-Paddings than ELL

⚫ Improved cache hit ratio

Numerical environments

8

Env 1 ： Oakforest-PACS (OFP)

◼ Xeon Phi

⚫ 64 cores,128threads, MCDRAM

◼ Intel compiler (v19.1.1.304)

⚫ Options : -O3 -xMIC-AVX512 -qopenmp -align array64byte -ipo

⚫ Numerical environments: KMP_HW_SUBSET=64c@2,2t

Env 2 ： Oakbridge-CX (OBCX)

◼ Xeon Gold Platinum 8280 × 2

⚫ 56cores, 56threads, DDR4

◼ Intel compiler (v19.1.1.304)

⚫ Options ： -O3 -xHost -qopenmp -align array64byte -ipo

Env3 ： Wisteria/BDEC-01 Odyssey (WO)

◼ A64FX

⚫ 48cores, 48 threads, HBM2

◼ Fujitsu compiler (4.5.0 tcscd-1.2.31)

⚫ Options : -O3 -Kfast,openmp,zfill,A64FX,ARMV8_A

⚫ Numerical environments : FLIB_FASTOMP=TRUE, FLIB_HPCFUNC=TRUE,

 XOS_MMM_L_PAGING_POLICY=demand:demand:demand

Conditions of application (P3D)

9

P3D application

◼ DoF : 2563 = 16,777,216

◼ Thermal diffusivity : 𝜆1 = 1, 1 ≤ 𝜆2 ≤ 1010

ICCG solver

◼ Parallelized IC preconditioner with multi-coloring approach

⚫ Cyclic Multi-coloring + Reverse Cuthill-Mckee （CM-RCM）
⚫ Number of colors for CM-RCM : 10 colors

⚫ Convergence condition is
𝑟𝑘

2

𝑟0 2
≤ 10−8

⚫ Storage formats of the matrices are CRS, ELL and Sell-C-s

◼ Combination of the data formats of the matrix and vector

✓ FP64-FP64

✓ FP42-FP64

✓ FP32-FP64

✓ FP64-FP32

✓ FP32-FP32

✓ FP21-FP32

✓ FP16-FP32

Denoted as data format of “matrix”-”vector”

In descending order of the amount of memory transfer

＊FP16 vector is not included because it dose not converged.

Blue： Only evaluate on OFP，OBCX

Green：Only evaluate on WO

Comparison among the storage formats

10

0

2

4

6

8

10

12

14

WO OBCX OFP WO OBCX OFP WO OBCX OFP

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

FP64-FP64 FP32-FP64 FP32-FP32 FP16-FP64 FP16-FP32

CRS ELL SCS

Sell-C-s （FP64-FP64）shows performance close peak of memory bandwidth

◼ Computational time of Sell-C-s （FP64-FP64） on WO is 3.3 and 1.9 times faster than

OBCX and OFP, respectively.

⚫ Sell-C-s （FP64-FP64） on WO shows 812GB/s (measured by Fujitsu profiler).

⚫ Stream triad : OBCX=280GB/s、OFP=490GB/ｓ、ＷＯ=840GB/s

(WO/OBCX=3.0, WO/OFP=1.7)

Computational time of the preconditioner Whole computational time of ICCG

SCS = Sell-C-s

3.3times

1.9times

Overhead of type casting of adaptive precisions

11

0.0

1.0

2.0

3.0

4.0

5.0

6.0

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
 [

s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

OFP OBCX

The overhead of typecasting is enough small. （Up to 1.5%)

For measuring the overhead of typecasting, we prepared a dummy code that changed the FP21 or FP42

loading function to normal loading with the same amount of reference data.

0

500

1000

1500

2000

2500

1.00E+00 1.00E+03 1.00E+06 1.00E+09

N
u

m
b

er
 o

f
it

er
at

io
n

s

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

0

500

1000

1500

2000

2500

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

N
u

m
b

er
 o

f
it

er
at

io
n

s

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

The difference between data format on convergence ratio

12

0

500

1000

1500

2000

2500

3000

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10
N

u
m

b
e

r
o

f
it

er
at

io
n

s

l2

SCS FP64-FP64 SCS FP32-FP64
SCS FP32-FP32 SCS FP16-FP64
SCS FP16-FP32

Unconverged

OFP

OBCX

WO

Different combination of data formats shows different convergence ratio.

◼ There is no impact of lower data-precision with

good conditions.

◼ FP32-FP16 is not converged with condition
𝜆2

𝜆1
> 105 → Beyond expression ability of FP16

◼ Convergence ratio get worse on ill-condition by

changing vectors FP64→FP32

0

20

40

60

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

0

10

20

30

40

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

Performance improvement by low/adaptive precisions

13

0

5

10

15

20

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

l2

SCS FP64-FP64 SCS FP32-FP64
SCS FP32-FP32 SCS FP16-FP64
SCS FP16-FP32

OFP

OBCX WO

Low/Adaptive precision shows reduce computational time.

◼ FP16-FP32 was the fastest within the good condition.

⚫ 17.3% compared with FP64-FP64

◼ FP21-FP32 was the fastest within the good condition.

on OFP and OBCX.

⚫ 18.4%(OFP), 18.6%(OBCX)

◼ FP32-FP64 was the fastest in intermediate conditions.

◼ FP21-FP32 was faster in worse condition, again.

⚫ 12.6％(OFP), 13.7%(OBCX)

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+00 1.E+02 1.E+04 1.E+06

R
el

at
iv

e
er

ro
r

l2

FP32-FP64

FP32-FP32

FP21-FP32

Relative error of point compared with FP64-FP64

0

500

1000

1500

2000

2500

1.E+00 1.E+03 1.E+06 1.E+09

N
u

m
b

er
 o

f
it

er
at

io
n

s

l2

FP64-FP64 FP42-FP64 FP32-FP64

FP32-FP32 FP21-FP32

Applying low/adaptive precisions to whole ICCG 1/2

14

Relative error with FP21 and FP32 are large

• The relative error of FP21-FP32 is more than 10-1 with l2>2.66

• The relative error of FP32-FP32 has reached to 10-1 with l2>200

• No deterioration of FP42-FP64 accuracy was observed.

Number of iterations

Result of applying low or adaptive precision to all arrays

15

Applying low or adaptive precision to all matrices and vectors

FP42-FP64 is 10.5% faster than FP64-FP64 (𝜆2 = 1.0).

FP32-FP32 is 35.3% faster than FP64-FP64 (𝜆2 = 1.0).

FP21-FP32 is 39.5% faster than FP64-FP64 (𝜆2 = 1.0).

0

20

40

60

80

100

120

1.E+00 1.E+03 1.E+06 1.E+09

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

FP64-FP64
FP42-FP64
FP32-FP32
FP21-FP32

l2

0

5

10

15

20

25

30

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04
C

o
m

p
u

ta
ti

o
n

al
 t

im
e

[s
]

FP64-FP64 FP42-FP64
FP32-FP32 FP21-FP32

l2

Environment : OBCX

DoF : 2563 = 16,777,216

Storage Format : Sell-C-s

Coloring : CM-RCM(10)

Conclusion

16

◼ Evaluate the usefulness of low precision such as FP32 and FP16 and adaptive precision such

as FP42 and FP21 in real applications where the use of FP64 is typical.

⚫ We choose the P3D for the evaluations as the real application.

⚫ ICCG solver is included in the P3D and it is a typical application using FP64.

◼ We optimize the load and store routine of FP21 on CPUs for general purpose.

⚫ We change a storing data type of FP21 from one 64bits integer to two 32bits integers.

◼ In the numerical evaluations, we apply low/adaptive precisions to the IC preconditioner part or

whole ICCG method.

◼ The use of low/adaptive precision improves performance of ICCG method.

⚫ The effectiveness of Low/adaptive precision is high.

⚫ When we apply low/adaptive precision to the whole ICCG method, we have to consider the

error of the result.

➢ If the accuracy of the result is acceptable, low/adaptive precision shows good

performance improvement.

⚫ The fastest combination of the matrix and vector is changed depending on the condition of

the coefficient matrix.

Future work

◼ Considering an auto-tuning approach to dynamically select the best data format.

◼ Evaluation of more mixed precision : FP21-FP32 IC, FP42-FP64 CG part

◼ Adding verification

	スライド 1: Low/Adaptive Precision Computation in ICCG solver for ill-conditioned problem
	スライド 2: Outline
	スライド 3: Objective
	スライド 4: Data formats
	スライド 5: Expressive ability of each data format
	スライド 6: Type casting between FP21 and FP32
	スライド 7: Storage Format
	スライド 8: Numerical environments
	スライド 9: Conditions of application (P3D)
	スライド 10: Comparison among the storage formats
	スライド 11: Overhead of type casting of adaptive precisions
	スライド 12: The difference between data format on convergence ratio
	スライド 13: Performance improvement by low/adaptive precisions
	スライド 14: Applying low/adaptive precisions to whole ICCG 1/2
	スライド 15: Result of applying low or adaptive precision to all arrays
	スライド 16: Conclusion

