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Introduction

The behavior of electrons in atoms and molecules is governed by the time—dependent
Schrédinger equation (TDSE)

. 64’_ (1)
Lhﬁ = H(t)"p,

where i is the imaginary unit, h is the reduced Planck constant, H(t) is the
Hamiltonian operator, and W is the wave function of the system. W is a complex,
scalar function depending on 3N spatial coordinates and on time, W =W(xq,..,xy,t),
where N is the number of electrons. x; = (rj,w;), where r; is the spatial coordinate
of electron j, and w; is the spin coordinate. An electronic wave function must
satisfy the Pauli principlei‘P(xp.“,xp.",xk”“,xN,t)==—JP(xp.",xk”“,xp.n,xN,t)

in other words, the wave function must change its sign upon interchange of two
electrons.

In principle, the wave function W contains the complete information of the atom or
molecule under study. Any measurable quantity can be extracted from W. Therefore
the most direct way of studying the time-dependent behavior of an atom or molecule
based on first principles is to solve the TDSE

The Hamiltonian operator H(t) in equation (1) is a differential operator containing
single—electron terms operating on one electronic coordinate, and two—electron
Coulomb potential terms depending on the distance between two electrons

N 2 N (2)

e 1
H(t)—z< 2m or 2+V(r)+U( t)>+4n60;;|rj—rkl.

In equation (2), m, is the mass of an electron, e is the elementary charge, €, is
the permittivity of the vacuum, V(r) is a potential formed by the nucleus (nuclei)
of the atom (molecule), and U(r,t) is a time—dependent potential originating from
the interaction with an external time—dependent field, for example a laser field
The TDSE (1) is a partial differential equation in 3N spatial plus one temporal
variable. Since the derivative with respect to time t is of the first order, the
TDSE is an initial value problem in which an initial wave function W, = W(t = 0)
needs to be given. Given W,, we will find W(t) for 0 <t <T, where T is determined
by the longest timescale of the problem, for example, the temporal width of a laser
pulse. This kind of formulation is different from formula in traditional quantum

chemistry!, in which we find approximate solutions to the eigenvalue problem EY =

1 A. Szabo and N. S. Ostlund, “Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory” , Dover Publications, New York (1996).
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H'W, where H' is a time—independent Hamiltonian operator.

Solving the TDSE numerically is a difficult task because of its high
dimensionality. A simple approach of discretizing equation (1) is to represent the
wave function on a mesh with n grid points in each spatial dimension. If we let the
grid points be given by r®m = (x() y® z(MY) kI m=1,..,n, the discretized wave

function becomes

_ (kqlymy) (knlnvmy)
lpklllmll"'»kNleN =¥ (Tl I rN R (3)

where we neglect the spin coordinates for simplicity. We see that the discretized
wave function on the left hand side of equation (3) is an array of n3N complex
numbers. For the description of a laser—driven atom, we have to take n > 100 in most
cases. Thus, even for a two—electron system with N =2, the discretized wave
function is represented by at least 100° = 10'? complex numbers, which is too large
to store in memory. Therefore, we have to consider approximate methods to solve the
TDSE.

Multiconfiguration time—-dependent Hartree-Fock method

In the multiconfiguration time—dependent Hartree—Fock (MCTDHF) method?, the wave
function is expanded as a linear combination of Slater determinants ®;, which is
also called configurations

YO =) GO, @
1

where [ = (I, ...,Iy) is a multi-index, and
_ 1 (5)
@1(1:) = det[)(,l (t) XIN(t)] = W Z £j1"'jNXj1 (Xl, t) -..XjN(xN, t)

" JiedN

In equation (5), is an anti-symmetric Levi-Civita symbol, and y;(x,t) =

&
¢j(r,t)a(a0 is a sgiéforbital, which is a scalar function depending on one
coordinate only, and ¢;(r,t) is a spatial orbital. For a spin-up electron, ¢ =a,
and for a spin—down electron o = f. The coefficients C; are called configuration—
interaction (CI) coefficients. By inserting the ansatz (5) into the Dirac—Frenkel
variational equation,

f dxy - doy SW* (6) [H(t) - m%] W(t) = 0, ©)

where §W(t) is a small variation of the wave function with respect to the variation
of C; or ¢, we can derive time-dependent equations for the coefficients C; and the
spatial orbitals ¢;.

2 J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, and A. Scrinzi, “An MCTDHF
approach to multielectron dynamics in laser fields,” Laser Phys. 13, 1064 (2003);
T. Kato and H. Kono, “Time—dependent multiconfiguration theory for electronic
dynamics of molecules in an intense laser field,” Chem. Phys. Lett. 392, 533
(2004) .

A==V a—F 42— - 38 - Vol. 19, No. 3 2017



The equations (4) and (5) have two interesting properties: (i) By the definition of
equation (5), we see that a Slater determinant always satisfies the Pauli principle
This means that two orbitals in one Slater determinant cannot be equal to each
other. (ii) Both the coefficients C; and the Slater determinants ®; in equation (4)
are time—dependent. The time—dependence of both C; and ®; means that our ansatz for
the wave function is very flexible in the sense that the spatial orbitals ¢; in the
Slater determinants ®; can vary in response to the change in the time—dependent
potential U(r,t) [see equation (2)]. The time—dependent equations of motion for C,(t)
and ¢;(r,t) are a set of coupled, non-linear equations, in contrast to the original
TDSE (1), which is linear with respect to W.

Then, we need to set the number of determinants we include in the sum (4). In the
original formulation of MCTDHF?, all the determinants that can be generated from a
given set of spin-orbitals are included in the sum. For example, if we have six

spin-orbitals and N =3 electrons, we can construct (g) Ezzf§;;:= 20 different

Slater determinants. The number of possible determinants grows extremely rapidly
with the number of electrons N. If we assume that 2N spin-orbitals are needed for

an accurate representation of the wave function, we can construct (iy) ~ 4N /N[N

determinants. This exponential scaling with N makes it extremely demanding to apply
the MCTDHF method to many-electron systems. Thus, in most cases, few—electron
systems such as Be (four electrons)® and LiH (four electrons)? have been treated with
the MCTDHF method. In the most extensive calculation, a wave function for 15
electrons was constructed by 12 spatial orbitals for a NO molecule®, resulting in a
total of 392,040 Slater determinants in the sum (4).

Factorized GI method

We have suggested a way to overcome the unfavorable exponential scaling of the
MCTDHF method®, called the factorized CI method. In this method, we first assume
that the array of CI coefficients is arranged as a matrix, CU' This can be achieved
by using the index I to label the spatial orbitals for the up-spin (a) electrons
and J for the down-spin (B) electrons. If we assume a system with equal number N/2
of up—spin and down-spin electrons, then a general determinant can be written as
)y = det[pa- ¢y, a ¢y B¢, Bl If we assume that we have M spatial orbitals ¢);

. . . M . .
(j=1,..,M), then C;; is an L x L matrix, with L = (N/Z)' For a spin singlet state,

*D. J. Haxton, K. V. Lawler, and C. W. McCurdy, “Single photoionization of Be and
HF using the multiconfiguration time—dependent Hartree—Fock method,” Phys. Rev. A
86, 013406 (2012).

* M. Nest, F. Remacle, and R. D. Levine, “Pump and probe ultrafast electron dynamics
in LiH: a computational study,” New J. Phys. 10, 025019 (2008).

5D. J. Haxton and C. W. McCurdy, “Ultrafast population transfer to excited valence
levels of a molecule driven by x—ray pulses,” Phys. Rev. A 90, 053426 (2014)

6 E. Lotstedt, T. Kato, and K. Yamanouchi, “Decomposition of the configuration—
interaction coeffcients in the multiconfiguration time—dependent Hartree—Fock
method,” J. Chem. Phys. 144, 154111 (2016).
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Cyy is symmetric, Cj; = Cj. We now assume that the coefficient matrix Cj; can be

written as a matrix product

< @
Cy® = ) B2 (OB ©),
wv=1

where B is an L X K matrix, A is a K X K matrix, and K is an expansion length
parameter satisfying 1 < K < L. We use bold upright font to denote matrices, and
normal italic font to denote the matrix elements, for example (B);, = Bj,. As
explicitly indicated in equation (7), both B and A depend on time. Dynamical
equations governing the time-dependence of B(t) and A(t) can be derived by applying
the Dirac—Frenkel variational principle

The efficiency of the factorization (7) depends on how many terms we have to
include in the expansion. We then need to know how large the expansion parameter K
has to be to obtain a converged result. Writing the equation (7) in matrix form, C=
BAB!, where B! denotes the transpose of a matrix B, it becomes clear that C is
invariant under the unitary transformation of B — BUY, and A - UAU!, where U is a
unitary matrix. If we choose U so that UAU! becomes a diagonal matrix, we see that
the factorization (7) is closely related to the eigenvalue decomposition of C. Thus
if C has only a few large, dominant eigenvalues, the ansatz (7) will be efficient.
Whether this is the case or not depends on the atomic or molecular system under
study. In general, we cannot judge the efficiency of the expansion (7) until we
perform explicit numerical simulations

The strength of the factorized CI method is that the number of parameters required
for constructing the matrix C;; of CI coefficients is K(L+ K), which can be much
smaller than L%, which is the number of parameters needed in the MCTDHF method
provided that K is sufficiently small, K <« L, for achieving the convergence.

Numerical implementation of MCTDHF and factorized CI

We have implemented the MCTDHF equations and the factorized CI equations® in
Fortran. In the implementation, we restrict the electrons to move along one spatial
dimension only. Although an atom or a molecule is a three—dimensional system, this
restriction to one spatial dimension is reasonable as long as it interacts with an
intense external electric field, since the electrons move mainly along the direction
of the field. In one dimension, the Coulomb potential must be modified at short
distances because of the singularity at the limit of zero interparticle separation
We employ a soft—core potential’, Vi.(r) & (r? 4+ a?)~2, in place of the Coulomb
potential, which is a common choice when we treat the intense laser—matter
interaction. The soft-core parameter a is taken to be a = ay, where ay =~ 0.53 x 10710
m denotes the Bohr radius

The spatial orbitals are discretized on a uniform mesh r@, q=1,...,qmax, such
that ¢;(r@) = ¢,;. The mesh spacing is Ar =r@*D —r@ = 0.1q,, r® =-300a,, and
r(@max) = 300a,, which means that the number of grid points is gmax = 6000. Second-
order derivatives are obtained using a seven—point finite difference formula

" J. Javanainen, J. H. Eberly, and Q. Su, “Numerical simulations of multiphoton
ionization and above—threshold electron spectra,” Phys. Rev. A 38, 3430 (1988)
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As we see in traditional, stationary-state quantum chemistry, the bottleneck of the
computation is the numerical evaluation of the two—electron integrals. In the
present one-dimensional model the two-electron integrals g;j,; are expressed as

_ PGP DG bpiPpiParPar (8)
Gijkl = f drdr m =~ Ar ;\/(r@’) — oyt o .

The sum in (8) is performed in two steps. First @p;j = ¢pipp; and wyy =

-1/2
Ar Y Og [(r(p) - r(‘”)z + az] are calculated, and second the sum g;j, =

AT Y4 @qijWqre is taken. In the actual program, the calculation of ¢;; and wy;; is
performed in parallel using the OpenMP library. This means that wy;; and Wy jr for
two different indices ij and i'j' are calculated simultaneously on different
computational cores

In order to propagate the MCTDHF wave function forward in time, we have to solve

the following coupled equations for Cj; and ¢j,

dCy 9)
i 7 = ZHUI’]’CI'],’
I”]’

., ddp; (10)
Lth} - Zq: hpq®qj + E@fpdp;j + ; ApjqrPar

where Hyjp,y = Hpjpp(9,t) is a four-dimensional functional of the orbitals and time,
hpq is a time—independent matrix, f, is a time-independent vector, and E(t) is a
scalar function of time. The time-dependent matrix hp, is the discretized version of
the single-electron operator —(h?/2m,)d2?/0r? +V(r), while E(0)f; = U(r@,t) is the
time—dependent potential U(r,t) in equation (2) evaluated at the grid points

Apjgk = Apjqi (@, C,t) is a time-dependent four-dimensional functional of the orbitals
and the CI coefficients. More detailed descriptions on these functionals can be seen
in reference 6.

The equations (9) and (10) are non—linear equations since Hyj,;, depends on the
orbitals ¢pj, and Ay g depends on the orbitals and on Cj;. To solve the equations
(9) and (10), we linearize them by assuming that the arrays H and A can be regarded
to be constant over a short time interval At. We then approximate the solution at

t + At by

C(t + At) = exp(—itH)C(t), (11)
$(t+ AL
- iTE (t)f ith A ith iTE (t)f (12)
~ exp (— > ) exp (— 7) exp(—itA) exp (— 7) exp (— T) d),

where T = At/h, and we have used matrix notation. The array H contains L* matrix

elements, and therefore, H is too large to be stored in memory. However, without
storing H, the operation of H on C, (HC);; =, ;, HypjCpy» can be efficiently
implemented using a number of operations proportional to L2. The exponential in
equation (11) is therefore evaluated by the Lanczos algorithm®: First, k orthonormal

8 R. J. LeVeque, “Finite Difference Methods for Ordinary and Partial Differential
Equations,” Society for Industrial and Applied Mathematics, Philadelphia (2007).
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vectors Vvy,..,V spanning the same space as the matrix products C,HC, HZ2C,...,H¥"1C
are generated, and the matrix elements A;; = vLTij are calculated. We let v; =C.
Then, we make the approximation C(t+ At) = Y;b;v;, with b =exp(—itA)by, by =
(1,0, ...,0)¢.

For the orbital equation (12), we note that the calculation of the operation on ¢
by the exponential involving f is trivial, since f is a diagonal matrix. The
exponential including A is calculated with the Lanczos method, similarly to the
equation (11). For the exponential containing h, it is advantageous to use the
Crank-Nicolson method®, which is unconditionally stable for any value of At. Because
of this stability, it becomes possible to use longer time steps At and thereby
shorten the time needed for the simulation. In the implicit Crank—Nicolson method,
we obtain an approximation to the expression y = exp(—ith)y, by solving the implicit
equation (14 ith/2)y = (1 —ith/2)y,.

In the case of the factorized CI method, the equation (9) for the CI coefficients
is replaced with two equations, that is, one for the A matrix, and the other for the
B matrix. The equation for the spatial orbitals is the same as that in the MCTDHF
method, equation (10). The equations for A and B are also solved by treating the
non—linear parts as constant over a short time step, and by approximating
exponentials with the Lanczos method

Results and discussion

As a first test of the factorized CI method, we have simulated a 1D model of an Hj
molecule interacting with a short intense laser pulse. The H, molecule is considered

to be linear, consisting of four H atoms placed equidistantly on a straight line

t=0fs
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Figure 1. Electron density p(r) at different times.

The top panel shows the one-electron density before the interaction with the laser field at t =
0, while the bottom panel shows the distorted one—electron density during the interaction with the
laser field. In both panels, the solid curve (MCTDHF) and the dash—dotted curve (Fact. CI, K=8)
almost perfectly overlap. ag =~ 0.53 X 1071% m denotes the Bohr radius.
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with an internuclear separation of 4a,. In the simulation, we employ a laser field
having a wavelength of 800 nm, a duration of 3 optical cycles, and a peak electric
field amplitude of 25 GV/m. A total number of spatial orbitals employed in the
calculation is M = 10. Since a time—dependent wave function depends on N spatial
variables and on time, it cannot be visualized directly. Some kind of reduced
quantities must be calculated for the visualization. A very useful observable may be
the one—electron density p(r) defined as

p(r,t) = Nf dwidx, - dxy|WP(xyq, ..., Xy, )%, (13)

where x; = (17, w;). The one-electron density p(r,t) is a measure of the probability of
finding an electron at a particular place in space. More precisely, the quantity

Ar p(r,t)/N is the probability of finding an electron in a small range Ar around the
point r at time t. Conventionally p(r,t) is normalized so that [drp(r,t) =N.

In Figure 1, we show the one-electron density at two instants in time, i.e., (i) at
t =0 (before the interaction with the laser pulse) and (ii) at t = 3.4 fs (during
the interaction). The one—electron density distorted by the interaction with the
laser field can clearly be seen in the bottom panel of Figure 1. The larger electron
density in the negative r area (r < 0) than in the positive r area (r>0) found in
Figure 1 shows that H; is polarized by the laser field. It can also be seen in
Figure 1 that the factorized CI approximation is a good approximation for the
density p(r) even at K =2. When K =8, the one-electron density obtained by the
factorized CI approach shown by a dash-dotted line perfectly overlaps with the
reference MCTDHF curve. We thus confirm that the results obtained by the factorized
CI method converge to those obtained by the MCTDHF method at K = 8. Further
comparisons of the performance of the factorized CI method with the MCTDHF method
can be found in reference 6.

To what extent polarization is induced in many—electron systems by an external
laser field depending on the laser parameters such as wavelength, peak electric
field amplitude, and pulse width is currently an open problem in the atomic
molecular, and optical physics community. It is expected that the application of
computational methods like the MCTDHF method and the factorized CI method, which
have been developed to solve time—dependent problems, will contribute to our further

understanding of laser—driven electron—electron interaction.

Future developments

One important subject for future investigation is the efficient parallelization of
the MCTDHF codes. A fully parallelized MCTHDF code is crucial for the extension of
the MCTDHF method to three—dimensional atoms and molecules with more than 10
electrons.

Concerning the factorized CI method, another issue we need to investigate is the
issue of the non-conservation of spin. As shown in reference 6, the factorized CI
equations of motion do not conserve the expectation value of the total spin
operator. Although this property does not seem to have a large influence on the
electron dynamics under the influence of an intense external light field, and the
effect of spin non—conservation is usually small, it would be desirable to develop a
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factorization method further so that the expectation value of the total spin is
conserved.
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