Task Priority Control for the HPX Runtime System'

Suhang Jiang

Tohoku University

1. INTRODUGTION

In recent years, high—performance computing (HPC) is experiencing a phase change with
the challenges of programming, management of heterogeneous multicore system
architectures, and large scale system configurations. Synchronization [1] is the
process of coordinating the behaviors of two or more processes, which may be running
on different processors. Synchronization 1is needed for various collective
communications such as parallel reduction. As the HPC system size increases, the
overhead of a global synchronization involving a large number of processes is likely
to become larger. Therefore, there is a demand for avoiding such expensive global
synchronizations as much as possible to achieve high performance on an unprecedentedly
large HPC system in the future

Task-based execution is one promising approach to minimizing global synchronizations
because it does not perform expensive synchronization as long as task dependencies are
not violated. High Performance ParalleX (HPX) [2][3] is one promising candidate of
task—based programming and execution models, which provides a C++ class library to
describe tasks and their dependencies, and also a runtime system for parallel computing
based on the partitioned global address space (PGAS) model [4]. Therefore, this work
focuses on HPX for task—based parallel execution

In HPX, an OS—level thread called a worker thread executes tasks in a queue in a
first-in first-out (FIFO) policy; tasks in the queue cannot overtake their preceding
tasks. As a result, the execution of a task on the critical path can be delayed by
executing other non—critical tasks. The OpenMP specification version 4.5 [5] and later
support task priority, resulting in higher performance. However, as far as we know
such a task priority control mechanism has hardly been discussed for the HPX runtime
system. Therefore, this paper discusses task priority control to improve the performance
of a task—based HPX application by decreasing the waiting time of critical tasks in
the queue.

The main contributions of this work are as follows:

1) Task priority control in HPX is achieved by using decoupled thread pools

2) An appropriate thread mapping strategy to prioritize critical tasks is explored
and

3) Performance improvement by task priority control is quantitatively evaluated

VBB I OIE L, 2019 AFEE T - LR IEPGREEO 1757 v 75 X v 77 LV HPX
L XMP otbifg bt LD £,
2 2 DS iWAPT2020 IZ2THRELE LT,

A==V a—F 42— - 30 - Vol. 23, No5 2021

The rest of this paper is organized as follows. Section 2 briefly reviews the related
work. Section 3 presents the proposed mechanism to achieve task priority control in
the HPX runtime system. Section 4 shows some evaluation results, and discusses the
impact of task priority control on performance. Finally, Section 5 gives some concluding

remarks, describes our future work.

2. RELATED WORK

Task—-based execution is promising to prevent global synchronizations and thus to
achieve high performance on a largescale future HPC system, on which a global
synchronization is even more expensive [6]. HPX [2][3] is a parallel runtime system
designed to overcome the limitations of conventional runtime systems such as starvation,
communication latencies, remote resource access overheads, and the waiting time until
contention resolution. It also provides a Ct++ class library for task—based programming

HPX uses standard C++ classes for asynchronous operations, such as future and promise.
A future class object is used to retrieve a value that is set by a different thread
using a promise class object. In C++11 and later, thus, two different threads can share
data using future and promise class objects. In HPX, the thread using a promise object
could run on a different node. First, when a future class object is created by a thread
running on one node, the thread is not blocked and continues to execute. In the
background, another thread is launched on the same node to implicitly manage the inter—
node communication. Then, the latter thread is waiting until the value of a promise
class object is set by a different thread potentially running on another node. Finally,

the value is shared via inter—node communication

Order of instantiation

Thread Pool ‘
Staged Queue
Pending Queue

Round Robin Allocation

)l
ik I

Worker Worker Worker Worker
thread thread thread thread

Fig. 1. Task execution with the original mechanism. Every task is executed by one of

Ou-
m

worker threads in the default thread pool. A red task (Pl and P2) is critical and can

start running right after its preceding purple task (S).

Figure 1 illustrates how tasks are executed in the original HPX runtime system. In

the HPX runtime system, a task is created when a future class object is instantiated,

A=N—T Y Ea—F 4 v T Za—R - 31 - Vol. 23, No5 2021

and then assigned to one of the worker threads in a round-robin fashion. Each task can
be in one of five states. The first one is running, which means that the context is
active, and the code is running as if it runs with a native thread. The second state
is suspended, which means that the task is waiting for a synchronization event. The
third state is staged, which means that the task has been created, but cannot start
execution yet, because its dependency is not satisfied. The fourth state is pending,
which means that the task is ready to run, but still needs to wait in the task queue
until a worker thread becomes available. The fifth state is terminated, which usually
means that the task execution is finished. To manage the stages of each task, a worker
thread has two kinds of task queues, the staged and pending queues. When a task is
assigned to a worker thread, the task is first pushed to the staged queue until its
dependency is satisfied. When the task dependency is satisfied, the task is moved to
the pending queue and waits until the corresponding worker thread becomes available
for the execution. Tasks in the pending queue are executed in a FIFO policy, and cannot
overtake their preceding tasks. Thus, the execution of a task on the critical path
could be delayed by executing other threads, if the critical task is moved to the
pending queue after the noncritical ones. Suppose that red tasks in Figure 1, Pl and
P2, are critical, and P2 needs only the result of task S. Then, task P2 can start
running right after task S. However, task P2 needs to wait for task G if tasks G and
P2 are assigned to the same worker thread. As a result, the critical task needs to wait
longer than necessary, and hence the total execution time increases. Therefore, this
paper improves the HPX performance by giving a higher execution priority to critical
tasks.

The OpenMP specification version 4.5 [5] and later support a mechanism to specify
the priority of a task in the task queue. This priority is a hint to the OpenMP runtime
system for the order of task execution. During the execution, the task scheduler will
execute higher priority tasks before lower priority ones as long as the task
dependencies are not violated. In HPX, a task can still wait in the pending queue even
if its dependency is satisfied. The task will wait until a worker thread becomes
available in the default thread pool. In contrast to the mechanism of OpenMP, our
proposed method uses decoupled thread pools to control the priority of tasks. By using
different thread pools for critical and non—critical tasks, the critical tasks can be
executed by worker threads without interference from non—critical tasks

This paper also discusses a thread mapping method to map each worker thread to a
different processor core. A better thread mapping method can mitigate the load imbalance
and improve the performance of a task—based application. HPX provides four different
built—in thread mapping methods. One of the four built-in methods is selected when an
HPX application is launched. The first method is the most standard way of thread
mapping, called compact. Using this method, all the threads will concentrate on as

fewer sockets or NUMA domains [2] as possible. The second method, called scatter,

A==V a—F 42— - 32 - Vol. 23, No5 2021

evenly assigns threads to physical cores and NUMA domains. The third and fourth methods
called balanced and NUMA-balanced, are similar to scatter. They assign threads to
physical cores and NUMA domains in a round-robin fashion.

However, balanced assigns consecutive threads to different physical cores, while
NUMA-balanced assigns consecutive threads to different NUMA domains. One problem of
the built—in mapping methods is that all the methods assume to use the default task
management of HPX. If multiple thread pools are used for the execution as proposed
later in this paper, the built-in mapping methods may not effectively improve
performance. In this work, therefore, it is necessary to design and implement a thread

mapping method for exploiting the potential of multiple thread pools.

3. TASK PRIORITY CONTROL FOR HPX

As shown in Figure 1, in the original HPX runtime system, a task is created when a
future class object is instantiated. Then, tasks are assigned to worker threads in a
round-robin fashion. Each worker thread has two kinds of task queues. A task waits in
the staged queue until the task dependency is satisfied. After that, the task moves to
the pending queue and waits until the worker thread is available for the task execution.
As a result, tasks assigned to one worker thread are executed in an FIFO fashion; a
subsequent task cannot overtake its preceding tasks. Therefore, the execution of
critical tasks can be delayed by executing its preceding tasks no matter if the
preceding ones are critical.

In this work, we propose a task priority control mechanism for the HPX runtime system
so that critical tasks can be executed right after their task dependencies are satisfied
In the proposed mechanism, worker threads are grouped into two different thread pools
Worker threads in one thread pool are used only for critical tasks, while worker threads
in the other thread pool are for non—critical tasks. Therefore, since critical and non—
critical tasks are respectively assigned to different thread pools, the execution of
critical tasks is never blocked by the execution of non—critical tasks.

In the proposed mechanism, critical tasks are prioritized as follows. Suppose that
the task dependencies of an application are represented as a directed acyclic graph
(DAG). Then, critical tasks can be selected with considering the DAG. The proposed
mechanism assumes that programmers are responsible for identifying critical tasks of
an application. As a typical example, in this paper, critical tasks are defined as the
tasks that appear most frequently on the critical path of an application. The critical
tasks are automatically detected by using the following three steps. First, we find
the critical path of the DAG by finding the longest path in the DAG. Second, we
calculate the number of occurrences of each task in the critical path. Finally, the
tasks that have the highest number of occurrences in the critical path are detected as
the critical tasks. After that, only the critical tasks are assigned to a dedicated

thread pool instead of the default thread pool, while the other non-critical tasks are

A==V a—F 4T Za—RA - 33 - Vol. 23, No5 2021

assigned to the default thread pool. In addition, since worker threads in each of the
two thread pools can be mapped to processor cores in various ways, this paper also
proposes a thread mapping method for decoupled thread pools.

As shown in Figure 1, in the original HPX runtime system, all tasks are assigned to
worker threads in the default thread pool. If the result of one task is required by
other subsequent tasks, the subsequent tasks are blocked in the staged queues until
the result of the preceding task becomes available. Suppose that a critical task is
blocked. Then, if some other tasks are in the pending queue, they are executed earlier
than the critical task, potentially increasing the waiting time of the critical task
and hence prolonging the critical path. Therefore, the original HPX mechanism needs an
additional mechanism for giving a higher priority to critical tasks so as to prevent
prolonging the critical path.

Figure 2 illustrates how tasks are executed with the proposed mechanism. Unlike the
original mechanism, the proposed mechanism can prioritize to execute critical tasks by
using a dedicated thread pool for the critical tasks, called a critical thread pool.
In the proposed mechanism, critical task P2 can be executed right after task S. Since
the critical tasks and non—critical tasks are assigned to different thread pools, the
critical tasks in the pending queues do not need to wait for noncritical tasks.
Therefore, the proposed mechanism can prevent delaying the execution of critical tasks
Because for each task queue, it is divided into staged queue and pending queue, between

the decoupled thread pools, task dependencies can be achieved better.

Order of instantiation Order of instantiation

Default Thread Pool Critical Thread Poaol

M-

Waorker
thread

Worker
thread

O | o

O-mn | _
om-

Fig. 2. Task execution with the proposed mechanism. Only critical tasks (Pl and P2) are

assigned to worker threads in the critical thread pool.

In the original HPX runtime system, all worker threads are in a single thread pool
and selected for individual tasks while considering only their localities, i.e., NUMA
domains. As shown in Figure 2, however, the proposed mechanism uses two types of worker
threads for critical and non—critical tasks, respectively. A newly arisen problem is
how to map worker threads to processor cores with considering not only their localities

but also their types. Therefore, in Section 1V, we discuss the performance gain by the

A==V a—F 42— - 34 - Vol. 23, No5 2021

proposed mechanism, and also the effect of using a different thread mapping method on
performance.

In HPX, a task can be executed by any threads of a thread pool by using a task
executor called pool_executor. We use hpx::async function call to execute all the tasks
asynchronously. Which thread pool is used for executing a task can be determined by
specifying the parameter of thread pool in the executor. Thus, to assign the critical
tasks to the critical pool, we set the critical pool as a parameter of the executor
that runs the critical tasks. On the other hand, we use the default thread pool for
the executor running the non—critical tasks. Listings 1 and 2 show the code snippets
of the merge sort benchmark using the default thread pool and the decoupled thread
pools, respectively. In this benchmark, the tasks are divided in a recursive way, and
they are run in parallel by using the hpx::async function. The differences between the
default and the proposed mechanisms are shown in the code, starting from Line 22. As
shown in Listing 2, the proposed mechanism first sets the critical pool as the thread
pool of the critical_executor (Lines 23-24). Then, the critical pool is used for
executing the merge task by specifying the critical_executor as the task executor for

the task.

Listing 1. The merge sort with the default thread pool.

1 | std::vector<int:> mergesort_par (std::vector<int> v)

2| {

3 Af (v.size() <= 2)

4 {

5 // Sort task

6 return serial_sort(v);

y }

8 alsa

9 {

10 //8plit task

n std::tuple<std: :vector<int>,

12 std::vector<int>> splits = split(v);

13 std::vector<int> left = std::get<0>(splits);

14 std::vector<int> right = std::get<l>(splits);

15

16 //Divide tasks recursively

17 hpx::future<std::vector<int>> f_left = hpx::async(
18 mergesort_par, hpx::find_here(), left);

9 hpx::future<std::vector<int>> f_right = hpx::async(
20 mergesort_par, hpx::find here(), right);

21

2 //Merge task using the default thread pool

23 hpx::future<std::vector<int>> fm =

24 hpx::async (merge, hpx::£find_here(), f_left.get(),
25 f_right.get());

26 }

7 |}

A=N—T Y Ea—F 4 v T Za—R - 35 - Vol. 23, No5 2021

Listing 2. The merge sort with the decoupled thread pools

1 | std::vector<int> mergesort_par (std::vector<int> v)

2 | {

3 if (v.size() <= 2)

4 {

s // Sort task

6 return serial_sort (v);

7 }

] else

° {

10 //Split task

" std::tuple<std::vector<int>,

12 std::vector<int>> splits = split(v);

13 std::vector<int> left = std::get<0>(splits);

14 std::vector<int> right = std::get<l>(splits);

15

16 //Divide tasks recursively

17 hpx::future<std::vector<int>> f_left = hpx::async(
18 mergesort_par, hpx::find_here(), left);

19 hpx::future<std::vector<int>> f_right = hpx::async(
20 mergesort_par, hpx::find_here(), right);

2

2 //Merge task using the critical thread pool

n hpx::threads: :executors: :pool_executor

24 crit_executor (CRITICAL_POOL_NAME) ;

25 hpx::future<std::vector<int>> fm =

2% hpx: :async(critical_executor, merge,

b1} hpx::find_here(), f_left.get(), f_right.get());
23 }

2 |}

A. Thread Mapping for Multiple Thread Pools

Since the built—in mapping methods of HPX are only applicable for the default thread
pool, this work proposes a thread mapping algorithm for multiple thread pools. We adopt
the built—in NUMA-balanced method of HPX to implement the proposed algorithm, NUMA-
balanced—mtp. The key difference between these two algorithms is that NUMA-balanced-—
mtp distributes the threads from multiple thread pools among the NUMA domains. We
choose the NUMA-balanced mapping because it can effectively improve performance on a
NUMA system by reducing the load imbalance among the NUMA domains [7][8]

Algorithm 1 depicts the NUMA-balanced-mtp algorithm. First, the algorithm retrieves
the available NUMA domains using the resource::partitioner object of HPX (Line 1).
Then, it iterates the threads of all the thread pools. The next(pools) function starts
from the critical thread pools to give a higher priority to the critical thread pools
to be mapped than the other thread pools (Lines 2 and 9). For each thread, the algorithm
selects a target NUMA domain in a round-robin fashion (Line 6). The threads are
distributed among the NUMA domains to reduce the load imbalance. Then, it maps the
thread to a processor core of the target NUMA domain (Line 7). To map a thread to a
processor core, the map function uses the add_resource routine of the

resource: :partitioner object

A==V a—F 42— - 36 - Vol. 23, No5 2021

Algorithm 1 The NUMA-balanced-mtp Algorithm
Input: rp {Resource partitioner object of HPX}
Input: pools {Thread pools}
I: domains < rp.numa_domains()
2 pool « next(pools)
3: while current_pool do
4 for thread in pool do
5 {Iterate the NUMA domains in a round-robin fash-
ion}
6 target_domain + next(domains)
7: map(thread, target_domain)
8

end for
9 pool + next(pools)
10: end while

TABLE I THE CONFIGURATIONS OF THE OAKBRIDGE-CX AND KNL4 SYSTEMS.

Machine NUMA domains Cores/domain Threads/core
Intel Xeon Phi KNL 4 I8 4
Oakbridge-CX 2 28 1

4. EVALUATION AND DISCUSSIONS

As shown in Figure 1, in the original HPX runtime system, a task is created when a
future class object is instantiated. Then, tasks are assigned to worker threads in a
round-robin fashion. Each worker thread has two kinds of task queues. A task waits in
the staged queue until the task dependency is satisfied. After that, the task moves to
the pending queue and waits until the worker thread is available for the task execution.

A. Evaluation Setup

In this section, we evaluate the performance gain by the proposed mechanism, using
two benchmark programs on the following two different systems. The first system is a
large cluster system of Intel Xeon Platinum 8280 processors, called Oakbridge-CX (0CX)
[9], which is installed at the Information Technology Center, the University of Tokyo.
The second is an Intel Xeon Phi Knights Landing (KNL) system [10], called KNL4. The
system is configured as a four-node NUMA system by setting Sub—NUMA clustering (SNC)
mode as the clustering mode of the KNL. In this mode, the system is partitioned into
four NUMA nodes, with 72 logical cores per NUMA node. The hardware configurations of
0CX and KNL4 are shown in Table I. HPX version 1.4.0 is used as the runtime system for
all the experiments.

One benchmark used to evaluate the performance is Cholesky factorization [11] to

compute,

A = LL*; (1)

where A is a Hermitian positive—definite matrix, L is a lower triangular matrix with
real and positive diagonal entries, and L* denotes the conjugate transpose of L. The

benchmark program consists of four kinds of tasks; Cholesky decomposition (potrf),

solving the triangular matrix equation (trsm), matrix multiplication (gemm), and

A==y V¥ a—F4 v Za—R - 37 - Vol. 23, No5 2021

symmetric rank-k update (syrk). A DAG of the task dependency for tiled Cholesky
factorization of 4X4 tiles is shown in Figure 3. Once the k—th panel is factorized
and then broadcast, the next most urgent task to complete is factorization of panel k
+ 1, which is a so—called look—ahead [12]. Therefore, it is already known that the
potrf tasks in the DAG are critical.

The other benchmark is an implementation of merge sort. In the case of merge sort
the DAG consists of split, sort and merge tasks, and there is no clear critical path,
as shown in Figure 4. However, as shown in the graph, the split and marge tasks appear
most frequently on every path. Compared with the split task, the merge task is more
computationally expensive because it needs to merge the previous results of the sort
tasks in a sorted order. Therefore, in this work, the merge task is considered as a
critical task. Only merge tasks are assigned to worker threads in the critical thread
pool.

B. Evaluation Results

First, the performance gain by the proposed mechanism is evaluated with the tiled
Cholesky factorization whose DAG is shown in Figure 3. The tile size is set to 4X4
elements, and thus each task operates on a submatrix of 4X4 elements. Two thread
mapping methods, the default and NUMA-balanced-mtp thread mapping methods are compared
in the following evaluation. In the HPX runtime system, as shown in the Figure 5,
balanced mapping is used as the default mapping. Thus, the default mapping distributes
worker threads to all the physical cores without considering the NUMA domains. On the
other hand, the NUMA-balanced—mtp distributes all worker threads of the decoupled
thread pools among the NUMA domains as follows. First, it assigns consecutive threads
of the critical thread pool to different NUMA domains. Then, it assigns consecutive

threads of the default pool to different NUMA domains

Fig. 3. Task dependency for tiled Cholesky factorization of 4X4 tiles. The potrf

tasks are critical.

A==V a—F 42— - 38 - Vol. 23, No5 2021

Fig. 4. Task dependency for merge sort (8-way parallel execution). The merge tasks

are handled as critical tasks in the evaluation.

NUMA-0 NUMA-1
Balanced
Do D4 D1 D5 D2 X0 D3 X1
NUMA-bal-mtp
X0 DO D2 D4 X1 D1 D3 D5

Fig. 5. Example of mapping results with two NUMA domains, six threads in the
default pool, two threads in the critical pool. Here Xi is the worker thread i of the

critical thread pool, and Di is the worker thread of the default thread pool.

For the evaluation on OCX, only one node is used and thus 56 threads are executed on
two NUMA domains. The size of the matrix is set to 2048 X2048, and the numbers of tiles
are thus 512. The evaluation results are shown in Figure 6. In the figure, the horizontal
axis indicates the configuration of thread pools used for executing the benchmark. The
tuple shown in the horizontal axis represents the numbers of threads in the critical
thread pool and the default thread pool. A tuple (¢, d) means that c¢ threads are in
the critical thread pool, and d threads in the default thread pool. The first column,
called default, uses the single default thread pool. As shown in the figure, the use
of decoupled thread pools with the default thread mapping method could decrease 33.5%
of the execution time at most on OCX by properly adjusting the configuration of thread
pools. The results from (28, 28) configuration show that balancing the number of threads
in default and critical thread pools cannot achieve the best performance. On the other
hand, the (50, 6) configuration shows the highest performance, indicating that
allocating more threads to the critical thread pool can significantly improve the
performance even if the number of threads of critical pool is much higher than that of

the default pool. These results also suggest that the time spent for waiting the

A==y V¥ a—F4 v Za—R - 39 - Vol. 23, No5 2021

critical tasks has a significant impact on the performance of the Cholesky benchmark.

= Default mapping = NUMA-balanced

120
100

80
60
40
20

0

Default (28, 28) 48, 10) (50, 8) (54,2)

Time [sec]

(thread numbers in critical pool, default pool)

Fig. 6. Performance evaluation results of Oakbridge-CX for the Cholesky benchmark.

mDefault mapping = NUMA-balanced

25

0 I

Default (128, 160)(160, 128) (192, 96) (224,64) (256, 32) (280, 8)

Time [sec]
iKT Ee
o o

«

(thread numbers in critical pool, default pool)

Fig. 7. Performance evaluation results of Knights Landing for the Cholesky

benchmark.

On the KNL4 system, all of 288 threads are running on different logical cores. The
size of the matrix is set to 512X512, and the numbers of tiles are thus 128. The
evaluation results on KNL4 system are shown in Figure 7. The results indicate that the
performance gain by the proposed mechanism increases as the number of worker threads
in the critical pool, and the execution time is reduced by 31.8% at the thread pool
configuration of (256, 32) with the default thread mapping method. These results show
that the use of decoupled thread pools can significantly improve performance even if
the number of threads in the critical pool is sufficiently large. The performance
results on OCX and KNL4 clearly show that the proposed mechanism can achieve a higher
performance than the default mechanism of HPX by giving a higher priority to critical
tasks. Figure 8 shows the waiting time in the staged and pending queues with different
numbers of threads allocated for critical and non—critical tasks. These results are

obtained using two HPX performance counters, called the staged time and the pending

A=N—a ¥a—F4 T Za—2R - 40 - Vol. 23, No.5 2021

time. As shown in the figure, the configuration with 256 threads in critical thread
pool can achieve the shortest pending time and also the shortest staged time. This
explains why this configuration can achieve the shortest execution time in Figure 7.
Compared with the default, all the configurations of the proposed mechanism can reduce
the waiting time. If the number of threads in the default thread pool is lower than
32, the number of threads for the non—critical tasks is too small, the waiting time of
the tasks will increase significantly. Therefore, the proposed mechanism can reduce
the waiting time of tasks even if the optimal number of worker threads in the critical
thread pool is not known in advance

M pending M staged
0.4

0.35

0.3

Time [sec]
o
N

0.25
0.15

0.1
0.05 I
0

Default (128, 160) (160, 128) (192, 96) (224, 64) (256, 32)
(thread numbers in critical pool, default pool)

Fig. 8. The waiting time in the staged and pending queues.

Next, the effects of thread mapping policies on performance are investigated using
the Cholesky benchmark program. Figures 6 and 7 also show the performance evaluation
results with the two thread mapping methods. Figure 7 shows that, for the same problem,
using the NUMA-balanced-mtp thread mapping can further increase the performance by 4. 8%
on KNL4. It is because, by distributing worker threads in different thread pools over
different NUMA domains, the NUMA-balanced-mtp thread mapping method reduces the load
imbalance among NUMA domains. The results also show that the proposed mechanism with
the NUMA-balanced-mtp thread mapping method can further improve the performance
suggesting that the load balance among NUMA domains 1is important in improving
performance of the proposed mechanism. However, Figure 6 shows that the NUMA-balanced-—
mtp thread mapping method decreases the performance on OCX, because the communication
cost among NUMA domains on OCX is larger and thus cancels the performance gain by
reducing the load imbalance. It is because the number of processor cores in the OCX is
much lower than that in the KNL4. The impacts of reducing the load imbalance to the
execution time of the Cholesky benchmark is lower than those of the communication cost
Therefore, the best thread mapping method depends on the hardware configuration, and
hence the thread mapping method should be carefully selected considering the target

system.

A==y V¥ a—F4 v Za—R - 41 - Vol. 23, No5 2021

Finally, the performance gain by the proposed mechanism is also done with the merge
sort benchmark on the KNL4 system. In this evaluation, the thread mapping method of
NUMA-balanced—mtp is used because it can improve the performance of the proposed
mechanism as discussed above. The evaluation results with the merge sort benchmark on
the KNL4 system is shown in Figure 9. The merge sort benchmark uses an array of 10°
numbers as input. As shown in the figure, all the configurations of the proposed
mechanism can achieve a higher performance than the default mechanism. In this
particular benchmark program, the best configuration is the (256, 32) configuration,
which decreases the execution time by 47% in comparison with the default mechanism.
Accordingly, the results clearly show that the proposed mechanism can improve the
performance even if there is no clear critical path in the DAG. As previously analyzed
the merge tasks are more computationally—expensive than the others, and hence they
should be executed earlier so that the execution of the merge tasks can be overlapped
with that of other tasks. These results also show the importance of identifying the
critical tasks in improving the performance of the task—based application.

40
35

30

Default (128, 160) (160, 128) (192, 96) (224, 64) (256,32) (280,8)
(thread numbers in critical pool, default pool)

Time [sec]
= - n N
o w o w

v

Fig. 9. Performance evaluation results of Knights Landing for the merge sort

benchmark.

TABLE IT RATIOS OF THE NUMBER OF EXECUTED THREADS AND THREAD TIME OF THE

BENCHMARKS.
Ratios Number of executed threads Thread time
Cholesky decomposition 0.1 13.3
Merge sort 0.99 0.6

As an analysis of the results on the KNL4 system, Table II shows the ratios of the
number of executed threads and thread times of the critical thread pool and the default
thread pool. As shown in the table, the ratio of the number of executed threads of the
two benchmarks are significantly different. For the Cholesky decomposition benchmark,
the number of executed threads of the critical thread pool is much lower than that of

the default thread pool. The ratio of the number of executed threads of Cholesky is

A==V a—F 42— - 42 - Vol. 23, No5 2021

0.1, which means that the number of threads executed for critical tasks is only 10% of
that is executed for non—critical tasks. In contrast, for the merge sort benchmark,
the number of executed threads of the critical thread pool is almost equal to that of
the default thread pool. As previously analyzed from the DAG of the merge sort benchmark,
the numbers of split and merge tasks in each path are equal. The results of the number
of executed threads show that these two benchmarks have different workloads, although
the best number of threads configurations of the benchmarks are the same. Moreover,
the ratio of thread times of the merge sort benchmark shows that the decoupled thread
pools mechanism can significantly decrease the average execution time of critical tasks
The ratio of thread times of the merge sort is 0.6, which means that the average
execution time of critical tasks is 60% shorter than that of the non-critical tasks.
The results shown in Table I1 suggest that the impacts of the decoupled thread pools
mechanism depend on the application workload and the hardware configuration of the

system.

5. CONCLUSIONS

This paper has proposed a task priority control mechanism that uses decoupled thread
pools in order to prioritize the execution of critical tasks. By using a pool of worker
threads dedicated to critical tasks, the proposed mechanism can prevent critical tasks
from waiting for non-critical tasks. As a result, the proposed mechanism can
significantly reduce the waiting time of critical tasks, and hence the total execution
time. In addition, the effects of using different thread mapping methods are also
investigated empirically. The performance evaluation results clearly demonstrate that
the proposed mechanism can reduce the staged time and the pending time, in which tasks
are waiting for other tasks. As a result, the proposed mechanism can reduce the total
execution time of the Cholesky benchmark program by approximately 33.5% and 36.1% at
maximum on OCX and KNL4, respectively. In addition, the NUMA-balanced-mtp thread mapping
method can further improve the KNL4 performance, even though it degrades the O0CX
performance. Accordingly, the proposed mechanism can improve the performance of task—
based HPX applications by prioritizing critical tasks with a low runtime overhead
especially if its parameters, such as the number of threads in each thread pool and
the thread mapping method, are appropriately adjusted for the target system.

As mentioned above, several parameters of the proposed method are empirically adjusted
by hand for the application and target system in advance. Since the performance is
sensitive to the parameter values, auto—tuning of them will be an interesting research
topic. Automatic detection of critical tasks in a DAG would also be important in
practical use. In addition, we can expect that the proposed mechanism can improve the
runtime systems for other task—-based PGAS languages, such as XcalableMP [13]. These

topics will be discussed in our future work.

A==V a—F 4T Za—RA - 43 - Vol. 23, No5 2021

ACKNOWLEDGMENTS

This work was propelled by Suhang Jiang, Mulya Agung, Ryusuke Egawa, Hiroyuki Takizawa.

The authors would like to thank Prof. Hiroaki Kobayashi of Tohoku University and Dr
Kentaro Sano of RIKEN R-CCS for fruitful discussions on this work.

This work is partially supported by MEXT Next Generation High-Performance Computing
Infrastructures and Applications R&D Program “R&D of A Quantum-Annealing— Assisted
Next Generation HPC Infrastructure and its Applications,” Grant—in-Aid for Scientific
Research (B) #16H02822 and #17H01706, and Initiative on Promotion of Supercomputing for

Young or Women Researchers, Information Technology Center, The University of Tokyo

REFERENCES
[1] T. E. Hart, P. Mckenney, A. K. D. Brown, and J. Walpole, “Performance of memory
reclamation for lockless synchronization,” Journal of Parallel and Distributed
Computing, vol. 67, no. 12, pp. 1270-1285, 2007.
[2] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX: A task
based programming model in a global address space,” in 2015 IEEE International

Conference on Cluster Computing, 2015, pp. 682-

689.
[3] H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX: an advanced parallel execution
model for scaling—impaired applications,” in International Conference on Parallel

Processing Workshops, 2009, pp. 394-401.

[4] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L. Graham
et al., “Productivity and performance using partitioned global address space
languages,” in The 2007 International Workshop on Parallel Symbolic Computation, 2007

pp. 24-32.

[6] OpenMP Architecture Review Board, “OpenMP application programming interface,
version 4.5, 2015. [Online]. Available: https://www. openmp. org/specifications/

[6] J. Loaiza, S. Chandrasekaran, and N. MacNaughton, “Using local locks for global
synchronization in multi—node systems,” 2008, uS Patent 7, 376, 744.

[7] F. Gaud, B. Lepers, J. Funston, M. Dashti, A. Fedorova, V. Qu ema, R. Lachaize,
and M. Roth, “Challenges of memory management on modern numa systems, Communications
of the ACM, vol. 58, no. 12, pp. 59-66, 2015

[8] M. Agung, M. A. Amrizal, R. Egawa, and H. Takizawa, “Deloc: A locality and memory-—
congestion—aware task mapping method for modern numa systems,” IEEE Access, vol. 8

pp. 6937-6953, 2020

[9] K. Nakajima, “Parallel multigrid method on multicore/manycore clusters,” in
Proceedings of the International Conference on High Performance Computing in Asia-—
Pacific Region Workshops, ser. HPCAsia2020. New York, NY, USA: Association for Computing
Machinery, 2020, p. 5-9. [Online]. Available: https://doi.org/10. 1145/ 3373271.3373273
[10] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High Performance

A==V a—F 42— - 44 - Vol. 23, No5 2021

Programming: Knights Landing Edition. Morgan Kaufmann, 2016.

[11] J. Dorris, J. Kurzak, P. Luszczek, A. YarKhan, and J. Dongarra, “Taskbased
Cholesky decomposition on knights corner using OpenMP,” in International Conference
on High Performance Computing, 2016, pp.

544-562.

[12] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark: past, present
and future,” Concurrency and Computation: practice and experience, vol. 15, no. 9,
pp. 803-820, 2003.

[13] K. Tsugane, J. Lee, H. Murai, and M. Sato, “Multi-tasking execution in PGAS
language XcalableMP and communication optimization on many—-core clusters,” in
International Conference on High Performance Computing in Asia—Pacific Region, 2018,

pp. 75-85.

A==V a—F 4T Za—RA - 45 - Vol. 23, No5 2021

