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1. Introduction

Depth information is very important for various applications [, such as 3D reconstruction,
autonomous driving and augmented reality. Nowadays, there are several ways to obtain the depth
information: 1) using depth camera, which measures the depth by structure light %, etc.; 2) using stereo
images or video streams, which provides some spatial and temporal information to estimate the depth map
3-41: 3) using monocular images [, for which the input is a single RGB image without temporal information.
Among these three ways, using the depth camera is the simplest way but it is expensive and usually has lots
of limitation, such as short sensing range and low resolution, while using single RGB images is the most
convenient way with lowest cost, but it is very challenging due to the limited information from the input
RGB image.

My research is depth estimation on single RGB images, which is the third way mentioned above.
There are lots of existing methods aiming to achieve the high accurate depth estimation with deep learning
method, which is proved to have better performance than the traditional methods [*). For example, Liu et al.
7] propose a convolutional neural network (CNN) model with a conditional random field (CRF) loss, which
is used to minimize the log-likelihood between neighboring superpixels generated by the model, while Cao
et al. ™ design a fully connected CRF to do the post-processing for refining the output. In addition, since
depth is a kind of geometric information, combining other geometric information such as surface normal
and semantic information 1'%, may help to improve the accuracy of depth estimation. Zhang et al. '] propose
a multi-task network, which can predict the surface normal, semantic segmentation and depth map
simultaneously. However, the performance can be improved by better utilizing the multi-scale information
of the input images, which is proved to be one of the keys for generating high-accuracy depth estimation.

Inspired by BTS method ['?), a new monocular depth estimation method is proposed in this work, i.e.,
HMA-Depth method 3! (which means a Hierarchical Multi-scale Attention method for Depth estimation).
In BTS method, a multi-scale method is proposed for depth estimation. For each scale of the image features,
a local planar guidance (LPG) module is introduced to guide the features back to the original resolution of
the input image. However, it uses a convolutional layer to combine the results from each scale, which does
not fully utilize the advantages of the scaled information. Instead of using LPG module, HMA-Depth
method adopts a hierarchical multi-scale attention method to do the depth estimation. Similar to BTS
method, HMA-Depth also tries to obtain the various advantages among different resolution scales.
Specifically, higher resolution can show more details of the image while lower resolution has relatively
clear object contour information. HMA-Depth extracts the features of multiple scales and adopts an
attention mechanism to generate the important area in the estimated depth maps. Different from BTS method,
HMA-Depth generates the depth map for each scale, as well as the attention map, which can show the area
that is important for estimation. The experiment results prove that HMA-Depth outperforms BTS method

and other state-of-art methods.
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2. Method

To obtain more precise local information from the image while keeping a good understanding of the
global context, HMA-Depth method is proposed, which adopts a multi-scale attention frame to do depth
estimation. The network architecture is shown in Fig.1. Firstly, a backbone network extracts the features
into different scales, i.e., H/8, H/4, H/2 and H (H/s indicates the scales of H/s x W/s for short, where s € {1,
2,4, 8}, and H and W represent the height and weight of the input image, respectively). Specifically, an
atrous spatial pyramid pooling (ASPP) module, skip connections and bilinear interpolation are used in the
up-sampling process. The ASPP module, using convolutional kernels with different dilation rates (» € {3, 6,

12, 18, 24}), is used to improve the feature quality.
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Fig.1 Network architecture
For each scale of resolution, a decoder block, which involves an attention module and a depth module,
is used to generate the estimation results for the corresponding scale. The depth module estimates the depth
map for each scale while the attention module can extract the preferred regions for depth map. To make

each scale focus on independent parts of the input image, the calculation of attention masks can be explained

as follows:
Mg = Anys (M
MH/4 = AH/4(1 _AH/S) 2
MH/Z = AH/2(1 - AH/S)(l - AH/4) (3)
My =(1- AH/S)(1 - AH/4)(1 - AH/z) 4)

Apyg> Apya and Ap ), indicate the attention maps for the scales of H/8, H/4 and H/2, respectively,
then My/g, Myjs,Mys;, and My indicate the corresponding weighted masks for each scale. These
calculations can make each attention module focus on independent parts of the input, and the sum of masks

equals to 1.
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The scaled depth maps and attention maps are illustrated in Fig.2. It can be seen that the global
information such as the object contour is estimated better in the lower resolution while higher resolution
module predicts fine details. And the sum of four masks should be a whole white mask.

The final output can be represented as follows:

Dfinal = Yses M - D" @)
where D™ is the scaled depth map generated from the depth module.

Depth map Attention map

Oufput: the final

Input: an RGB image
depth estimation

Fig.2 Depth and attention maps generated at different scales
As for the loss function, the scale-invariant error proposed by Eigen et al. [¥) is adopted to calculate

the error between the predicted y and the ground truth y*, and the formula is shown as follows:

A
Loss = =% 97 — 5 (%:9:)? (6)

in which g; = logy; — logy; and A € [0,1]; n represents the number of pixels that have valid depth

values. Similar to BTS method ['?, 1 = 0.85 is set in the experiments.

3. Experimental results

In the experiment, PyTorch [ is used to implement the whole network. The number of the epoch is
set as 50 and the batch size is 16. Multiple networks, such as ResNet 50, ResNeXt 50, are used as the
backbone network, extracting the dense feature. A part of the experiments is conducted with Reedbush-H
server. To verify the effectiveness of the proposed method, one commonly-used dataset, i.e., KITTI dataset
U151 is adopted to conduct the experiments.

KITTI dataset is obtained by an autonomous driving platform, which is equipped with a laser scanner,
a GPS localization system and a stereo camera rig. To compare with other methods, the commonly used

Eigen split ! is adopted in the experiments, involving 23488 images from 32 scenes for training and 697
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images from 29 scenes for testing. Tab.I shows the comparison result on KITTI dataset.

Tab.I. Quantitative results on KITTI dataset

Methods 311 | 821 | 831 | AbsRel| | RMSE| | RMSElog)|
Make3D [16] 0.601 | 0.820 | 0926 | 0280 | 8.734 0.361
Eigen et al. ¥ 0.702 | 0.898 | 0.967 | 0203 | 6307 0.282
Liu et al. ') 0.680 | 0.898 | 0.967 | 0.201 6.471 0.273
Kuznietso et al. 'S 0.862 | 0.960 | 0.986 | 0.113 | 4.621 0.189
Yin et al. ') 0.938 | 0.990 | 0.998 | 0.072 | 3258 0.117
DORN! 0932 | 0984 | 0994 | 0.072 | 2.727 0.120
BTS-ResNet 50 (12 0.950 | 0.991 | 0.998 | 0.062 | 2878 0.101
BTS-DenseNet 161 [12 0952 | 0.992 | 0.998 | 0062 | 2.871 0.094
HMA-Depth-ResNet 50 | 0.953 | 0.992 | 0.998 | 0.062 | 2.870 0.096
HMA-Depth-ResNeXt 50 | 0.951 | 0.992 | 0.998 | 0.062 | 2.867 0.094
HMA-Depth-DenseNet 121 | 0.952 | 0.991 | 0.998 | 0.063 | 2.874 0.096
HMA-Depth-DenseNet 161 | 0.955 | 0.993 | 0.998 | 0.060 | 2.850 0.092

* 1 indicates that the performance is better when the value is greater; | indicates the performance is better when the value is

lower. The bold value represents the best value for each metric.

According to the table above, HMA-Depth method outperforms other methods for all the metric,
except the root mean square error (RMSE) metric, which is a little larger than DORN method. In addition,
Fig.3 shows some qualitative results to prove the visualization performance. It compares BTS method and
HMD-Depth method by depth estimation results of two RGB images from KITTI dataset. It can be seen

that HMD-Depth method can generate more accurate boundary of the objects and more smooth surface.
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Fig.3 Visualization results of the KITTI dataset
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4. Conclusion

In this work, a new method, name HMA-Depth method, is proposed for depth estimation of single
RGB images. It utilizes the advantages of different scales of the image and adopts an attention mechanism
to extract the important areas of each scale. Specifically, HMA-Depth makes each scale focus on
independent area of the images, aiming to amplify the advantages of each scale. The quantitative results and
qualitative results both prove that HMA-Depth method outperforms other methods on KITTI dataset. To
obtain more solid comparison, however, another common-used dataset, NYU V2 dataset ?% as an example,
need to be used. Besides, some ablation studies are also necessary to prove the effectiveness of 4-scale
frame. The ablation study may include 3-scale, 5-scale frame or 4-scale frame without attention mechanism.

Therefore, the experiments on another datasets and ablation experiments will be conducted for the
next step. To improve the performance further, combining depth estimation task with semantic segmentation

results, which can help smooth the object surface, may also be considered in the future work.
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