科学技術計算 Ⅱ /コンピュータ科学特別講義 Ⅱ / ハイブリッド分散並列コンピューティング:「並列有限要素法入門」(オンライン)

中島研吾

東京大学情報基盤センター

本稿では、2022 年度冬学期に実施した、科学技術計算 II (大学院情報理工学系研究科数理情報学専攻) /コンピュータ科学アライアンス特別講義 II (同 コンピュータ科学専攻) /ハイブリッド分散並列コンピューティング (大学院工学系研究科電気系工学専攻)「並列有限要素法入門」 ¹について紹介する。「新型コロナウイルス感染症」のため、前年度に引き続き、全ての講義を Zoomによるオンラインで実施した。

2014 年度までは、夏学期、冬学期に、科学技術計算 I・II/コンピュータ科学特別講義 I・II「科 学技術計算プログラミング(有限要素法)」2を実施してきた。偏微分方程式の数値解法として、 様々な科学技術分野のシミュレーションに使用されている有限要素法(Finite-Element Method, FEM) について、背景となる基礎的な理論から、実用的なプログラムの作成法まで、連立一次方 程式解法などの周辺技術も含めて講義を実施し、プログラミングの実習を実施してきた。題材と しては一次元及び三次元弾性静力学を扱い、プログラミング言語としては C 言語を使用してい た。夏学期(I)と冬学期(II)に分けて、夏学期は有限要素法の理論とプログラミングの基礎、 冬学期はその並列化についての講義・実習を行い、冬学期は東大情報基盤センターのスーパーコ ンピュータを使った実習を実施してきた。2011 年度までは T2K 東大を使用していたが, 2012 年 度からは Fujitsu PRIMEHPC FX10 (Oakleaf-FX, 2012 年 4 月運用開始), 2016 年度からは「デー タ解析・シミュレーション融合スーパーコンピュータシステム(Reedbush)」のうち、汎用 CPU (Intel Broadwell/EP) のみから構成される Reedbush-U (2016年7月運用開始), 2019年度冬学期 からは、「大規模超並列スーパーコンピュータシステム (Oakbridge-CX, OBCX)」を使用してプ ログラミング実習を実施してきた。本年度からは、「『計算・データ・学習』融合スーパーコンピ ュータシステム (Wisteria/BDEC-01) 3」のうち、シミュレーションノード群 (Odyssey) を使用し ている。

2014 年度までの講義では、冬学期(Π)の履修は夏学期(I)の履修を前提としていたが、昨今の大学の国際化に伴い、10 月に入学する留学生が増加しており、そのような条件を満たさない履修者が増えてきた。そこで 2015 年度からは、方針を変更し、両者をある程度独立した科目として履修できるよう:

- 夏学期(I):計算ノード内のマルチスレッド並列化に関する内容⁴
- 冬学期(Ⅱ):分散並列環境における並列化に関する内容

¹ http://nkl.cc.u-tokyo.ac.jp/22w/

² http://nkl.cc.u-tokyo.ac.jp/14s/, http://nkl.cc.u-tokyo.ac.jp/14w/

³ https://www.cc.u-tokyo.ac.jp/supercomputer/wisteria/service/

⁴ http://nkl.cc.u-tokyo.ac.jp/22s/

のように実施することとした。留学生の受講,国際化に配慮して英語版教材のみを提供するとと もに、**2017 年度からは英語で講義を実施している。**

表 1 に講義日程と内容を示す。上記のように、様々な分野で広く利用されている有限要素法を題材とし、一次元・三次元定常熱伝導方程式を扱った。一次元・三次元有限要素法、MPI (Message Passing Interface) による並列プログラミング、並列要素法の順番で講義・演習を実施した。また、ハイブリッド並列プログラミングモデルの重要性を考慮して、MPI+OpenMP ハイブリッド並列プログラミングに関する講義・演習を実施した。MPI による並列有限要素法のプログラムの各プロセスに OpenMP を適用して並列化を実施した。11 月 16 日の講義は海外出張中 (アメリカ)で、講義時間に会議が開催されていたため、ビデオ録画しておいた講義を聴講してもらった。

表 2 は、オンラインとなった 2020 年度以降の受講者数、単位取得者数の推移である。

表1:講義日程,内容

	Date	Time	Title
1	Oct.05(W)	0830-1015	Introduction, Introduction to FEM (1/2)
2	Oct.12(W)	0830-1015	Introduction to FEM (2/2), 1D/3D FEM (1/4)
3	Oct.19(W)	0830-1015	1D/3D FEM (2/4)
4	Oct.26(W)	0830-1015	1D/3D FEM (3/4)
5	Nov.02 (W)	0900-1015	1D/3D FEM (4/4)
6	Nov.09 (W)	0830-1015	Introduction to Parallel FEM, Login to Odyssey, MPI (1/5)
7	Nov.16 (W)	0830-1015	MPI (2/5) (Video Recorded)
	Nov.23 (W)		National Holiday (No Class)
8	Nov.30 (W)	0830-1015	MPI (3/5)
9	Dec.07 (W)	0830-1015	Report S1, MPI (4/5)
10	Dec.14 (W)	0830-1015	MPI (5/5)
11	Dec.21 (W)	0830-1015	Report S2, Parallel FEM (1/4)
12	Jan.04 (W)	0830-1015	Parallel FEM (2/4)
13	Jan.11 (W)	0830-1015	Parallel FEM (3/4)
14	Jan.18 (M)	0830-1015	Parallel FEM (4/4), Hybrid OpenMP/MPI (1/2)
15	Jan.25 (W)	0830-1015	Hybrid OpenMP/MPI (2/2)
16	Feb.01 (W)	0830-1015	Q/A

表 2: 受講者・単位取得者数の推移

	受講者数 (うち留学生)	単位取得者数(うち留学生)
2020 年度	36 (19)	12 (7)
2021 年度	35 (17)	19 (11)
2022 年度	51 (22)	14 (10)