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Future of Supercomputing
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Future of Supercomputing

• Various Types of Workloads

– Computational Science & Engineering: 

Simulations

– Big Data Analytics

– AI, Machine Learning …

• Integration/Convergence of 

(Simulation + Data + Learning) 
(S+D+L) is important towards 

Society 5.0

– Super Smart & Human-centered 

Society by Digital Innovation (IoT, Big 

Data, AI etc.) and by Integration of 

Cyber Space & Physical Space
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Society 5.0
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• BDEC (Big Data & Extreme Computing)
– Platform for Integration of (S+D+L)

– Focusing on S (Simulation)

• AI for HPC, AI for Science, Digital Twins

– Planning started in 2015
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Wisteria/BDEC-01
• Operation starts on May 14, 2021

• 33.1 PF, 8.38 PB/sec by Fujitsu
– ~4.5 MVA with Cooling, ~360m2
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• 2 Types of Node Groups
– Hierarchical, Hybrid, Heterogeneous (h3)

– Simulation Nodes: Odyssey
• Fujitsu PRIMEHPC FX1000 (A64FX), 25.9 PF

– 7,680 nodes (368,640 cores), Tofu-D

– General Purpose CPU + HBM

– Commercial Version of “Fugaku”

– Data/Learning Nodes: Aquarius
• Data Analytics & AI/Machine Learning

• Intel Xeon Ice Lake + NVIDIA A100, 7.2PF 

– 45 nodes (90x Ice Lake, 360x A100), IB-HDR

• Some of the DL nodes are connected to external resources directly

• File Systems: SFS (Shared/Large) + FFS (Fast/Small)

The 1st BDEC System (Big Data & 
Extreme Computing)
Platform for Integration of (S+D+L)
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Rankings@ISC 2022
June 2022

Odyssey Aquarius

TOP 500 20 115

Green 500 34 21

HPCG 10 62

Graph 500 BFS 3 -

HPL-AI 10 -
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Wisteria/BDEC-01
Platform for Integration of (Simulation+Data+Learning) (S+D+L) 
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h3-Open-BDEC: Innovative Software Platform 
for Integration of (S+D+L) on the BDEC 
System, such as Wisteria/BDEC-01
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• 5-year project supported by 

Japanese Government (JSPS) 

since 2019

• Leading-PI: Kengo Nakajima (The 

University of Tokyo)

• Total Budget: 1.41M USD

13



• “Three” Innovations

– New Principles for Numerical 

Analysis by Adaptive Precision, 

Automatic Tuning & Accuracy 

Verification

– Hierarchical Data Driven Approach 

(hDDA) based on Machine Learning

– Software & Utilities for 

Heterogenous Environment, such as 

Wisteria/BDEC-01

h3-Open-BDEC: Innovative Software Platform 
for Integration of (S+D+L) on the BDEC 
System, such as Wisteria/BDEC-01
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Adaptive Precision Computing with FP42/FP21
Masatoshi Kawai (kawai@cc.u-tokyo.ac.jp)
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In recent years, the usefulness of low-precision floating-point 

representation has been studied in various fields such as machine 

learning. Low accuracy can be expected to have effects such as 

shortening calculation time and reducing power consumption. For 

example, in an application with a memory bandwidth bottleneck, the 

effect of reducing the calculation time by reducing the amount of 

memory transfer is significant. However, in fields such as iterative 

methods, it is common to use FP64 because the calculation accuracy 

strongly affects the convergence, and there are few application 

examples of low-precision arithmetic. This study investigates the 

applicability of low-precision representation to the Krylov subspace 

and stationary iterative methods. In this research, we focus on the FP32, 

FP16, and FP42, FP21, which are not standardized by IEEE754.

Developed method has been evaluated for ICCG solver, which solves 

linear equations derived from 3D FVM code for steady-state head 

conduction with heterogeneous material property (λ1=100, λ2=100~109). 

Generally, computation with lower precision (e.g. FP32-FP32, FP21-

FP32) becomes unstable, if condition number of the coefficient matrix 

is larger (λ2 is larger), FP21-FP32 provides the best performance if λ2

is up to 104. (“FP21-FP32” means “matrices are in FP21, and vectors 

are in FP32)
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Prediction of CFD Simulation by Deep Learning
Takashi Shimokawabe (shimokawabe@cc.u-tokyo.ac.jp)
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Computational fluid dynamics (CFD) is widely used in science and 

engineering. However, since CFD simulations requires a large 

number of grid points and particles for these calculations, these kinds 

of simulations demand a large amount of computational resources 

such as supercomputers. Recently, deep learning has attracted 

attention as a surrogate method for obtaining calculation results by 

CFD simulation approximately at high speed. We are working on a 

project to develop a parallelization method to make it possible to 

apply the surrogate method based on the deep learning to large scale 

geometry. Unlike the model parallel computing, the method we are 

currently developing predicts large-scale steady flow simulation 

results by dividing the input geometry into multiple parts and 

applying a single small neural network to each part in parallel. This 

method is developed based on considering the characteristics of CFD 

simulation and the consistency of the boundary condition of each 

divided subdomain. By using the physical values on the adjacent 

subdomains as boundary conditions, applying deep learning to each 

subdomain can predict simulation results consistently in the entire 

computational domain. It is possible to predict the simulation results 

in about 36.9 seconds by the developed method, compared to about 

286.4 seconds by the conventional numerical method. In addition to 

this, we are also attempting to develop a method for fast prediction 

of time evolution calculations using deep learning.



• “Three” Innovations

– New Principles for Numerical 

Analysis by Adaptive Precision, 

Automatic Tuning & Accuracy 

Verification

– Hierarchical Data Driven Approach 

(hDDA) based on Machine Learning

– Software & Utilities for 

Heterogenous Environment, such as 

Wisteria/BDEC-01

h3-Open-BDEC: Innovative Software Platform 
for Integration of (S+D+L) on the BDEC 
System, such as Wisteria/BDEC-01
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Wisteria/BDEC-01: The First “Really 
Heterogenous” System in the World
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h3-Open-UTIL/MP
Multilevel Coupler/Data Assimilation

• Current Coupler: ppOpen-MATH/MP
– Weak-Coupling of Multiple (usually two) Applications

• Each application does a single computation

19



h3-Open-UTIL/MP
Multilevel Coupler/Data Assimilation

• Current Coupler: ppOpen-MATH/MP
– Weak-Coupling of Multiple (usually two) Applications

• Each application does a single computation

• h3-Open-UTIL/MP
– Data Assimilation (Multiple Computations: Ensemble)

– Assimilation of Computations with Different Resolutions
• h3-Open-DATA, h3-Open-APP

– Data Assimilation by Coupled Codes
• e.g. Atmosphere-Ocean

• Data Assimilation: h3-Open-DATA
– Karman Filter, Particle Karman Filter

– LETKF

– Adjoint Method

• Generation of Simplified Models in hDDA

20



h3-Open-UTIL/MP (h3o-U/MP)
(HPC+AI) Coupling
[Dr. H. Yashiro, NIES]

21

• Providing on-the-fly input/output/training data to the Analysis/ML tools 
– Easy to apply to existing HPC applications

– Easy access to existing Python-based tools for AI/ML



Computing on Wisteria/BDEC-01
22

• Wisteria/BDEC-01

– Aquarius (GPU: NVIDIA A100)

– Odyssey (CPU: A64FX)

• Combining Odyssey-Aquarius

– Single MPI Job over O-A is 

impossible

– Actually, O-A are connected through 

IB-EDR with 2TB/sec.

– h3-Open-SYS/WaitIO-Socket

• Library for Inter-Process 

Communication through IB-EDR with 

MPI-like interface

– h3-Open-UTIL/MP

• Multiphysics Coupler



h3-Open-UTIL/MP +
h3-Open-SYS/WaitIO-Socket

23

• Single MPI Job (May 2021)

• Direct Communication between Odyssey-
Aquarius through IB-EDR by h3-Open-
SYS/WaitIO, which provides MPI-like Interface

May 2021 (Initial): Single MPI Job

Odyssey Aquarius

IB-EDR
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API of h3-Open-SYS/WaitIO-Socket
PB (Parallel Block): Each Application 

WaitIO API Description

waitio_isend Non-Blocking Send

waitio_irecv Non-Blocking Receive

waitio_wait Termination of waitio_isend/irecv

waitio_init Initialization of WaitIO

waitio_get_nprocs Process # for each PB (Parallel Block)

waitio_create_group
waitio_create_group_wranks

Creating communication groups 
among PB’s

waitio_group_rank Rank ID in the Group

waitio_group_size Size of Each Group

waitio_pb_size Size of the Entire PB

waitio_pb_rank Rank ID of the Entire PB
[Sumimoto et al. 2021]



h3-Open-UTIL/MP +
h3-Open-SYS/WaitIO-Socket
Available in June 2022

25

May 2021: MPI Only

Odyssey Aquarius

IB-EDR

June 2022: Coupler＋WaitIO



3D Earthquake Simulation 
with Real-Time Data 
Observation/Assimilation
Simulation of Strong Motion (Wave 
Propagation) by 3D FDM

[c/o Prof. T.Furumura
(ERI/U.Tokyo)]
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System on Wisteria/BDEC-01 using WaitIO
27
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Communications by WaitIO-Socket

28

program dmy_filter

<省略: 型宣言等>

call mpi_init (ierr)

call mpi_comm_size (MPI_COMM_WORLD, nprocs, ierr)

call mpi_comm_rank (MPI_COMM_WORLD, myrank,  ierr)

call WAITIO_CREATE_UNIVERSE (WAITIO_COMM_UNIVERSE, ierr)

if (myrank==0) then

open(100,file='./obsfile_list.txt’, form=‘formatted’, status=‘old’, iostat=ierr)

do i=1,300

<省略: obsデータ読み込み処理>

print *,"Send obs data ...... "

call WAITIO_MPI_ISEND (NTMAX1_o, 1,           WAITIO_MPI_INTEGER,  2,1, WAITIO_COMM_UNIVERSE,req(1,1), ierr)

call WAITIO_MPI_ISEND (DT_o,     1,           WAITIO_MPI_FLOAT,    2,2, WAITIO_COMM_UNIVERSE,req(1,2), ierr)

call WAITIO_MPI_ISEND (NST_o,    1,           WAITIO_MPI_INTEGER,  2,3, WAITIO_COMM_UNIVERSE,req(1,3), ierr)

call WAITIO_MPI_ISEND (AT_o,     1,           WAITIO_MPI_FLOAT,    2,4, WAITIO_COMM_UNIVERSE,req(1,4), ierr)

call WAITIO_MPI_ISEND (T0_o,     1,           WAITIO_MPI_FLOAT,    2,5, WAITIO_COMM_UNIVERSE,req(1,5), ierr)

call WAITIO_MPI_ISEND (ISO_X_o,  NSMAX,       WAITIO_MPI_INTEGER,  2,6, WAITIO_COMM_UNIVERSE,req(1,6), ierr)

call WAITIO_MPI_ISEND (ISO_Y_o,  NSMAX,       WAITIO_MPI_INTEGER,  2,7, WAITIO_COMM_UNIVERSE,req(1,7), ierr)

call WAITIO_MPI_ISEND (ISO_Z_o,  NSMAX,       WAITIO_MPI_INTEGER,  2,8, WAITIO_COMM_UNIVERSE,req(1,8), ierr)

call WAITIO_MPI_ISEND (ISTX_o,   NST,         WAITIO_MPI_INTEGER,  2,9, WAITIO_COMM_UNIVERSE,req(1,9), ierr)

call WAITIO_MPI_ISEND (ISTY_o,   NST,         WAITIO_MPI_INTEGER,  2,10,WAITIO_COMM_UNIVERSE,req(1,10),ierr)

call WAITIO_MPI_ISEND (ISTZ_o,   NST,         WAITIO_MPI_INTEGER,  2,11,WAITIO_COMM_UNIVERSE,req(1,11),ierr)

call WAITIO_MPI_ISEND (STC_o,    6*NST,       WAITIO_MPI_CHAR,     2,12,WAITIO_COMM_UNIVERSE,req(1,12),ierr)

call WAITIO_MPI_ISEND (VxAll_obs,NST*NOBS_LEN,WAITIO_MPI_FLOAT,    2,13,WAITIO_COMM_UNIVERSE,req(1,13),ierr)

call WAITIO_MPI_ISEND (VyAll_obs,NST*NOBS_LEN,WAITIO_MPI_FLOAT,    2,14,WAITIO_COMM_UNIVERSE,req(1,14),ierr)

call WAITIO_MPI_ISEND (VzAll_obs,NST*NOBS_LEN,WAITIO_MPI_FLOAT,    2,15,WAITIO_COMM_UNIVERSE,req(1,15),ierr)

call WAITIO_MPI_WAITALL (15,req, status, ierr)

call sleep(1)

enddo

close (100)

endif

call WAITIO_FINALIZE (ierr)

call mpi_finalize (ierr)

end

[Kasai et al. 2021]

Aquarius: SEND Odyssey: RECV



h3-Open-UTIL/MP (h3o-U/MP) + 
h3-Open-SYS/WaitIO-Socket

29



 Motivation of this experiment
 Tow types of Atmospheric models: Cloud resolving VS Cloud 

parameterizing

 Could resolving model is difficult to use for climate simulation

 Parameterized model has many assumptions 

 Replacing low-resolution cloud processes calculation with ML!

Diagram of applying ML to an atmospheric model

High Resolution Atmospheric Model
(Convection-Resolving Mode)

Low Resolution Atmospheric Model
(Convection-Parameterization Mode)

Physical process

Input

Output

Coupling with
Grid Remapping

ML App
(Python)

Coupling without
Grid Remapping

Coupling Phase 1
Training with high-resolution 

NICAM data

Coupling Phase 2
Replacing Physical Process 
in Low-Resolution NICAM 

with Machine Learning

Atmosphere-ML Coupling
[Yashiro (NIES), Arakawa (ClimTech/U.Tokyo)]

75% 25%



Atmosphere-ML Coupling

 Model component emulation (surrogation)

 The emulation target in this study is cloud

microphysical processes (phase changes,

collision, coagulation, and precipitation)

 Atmospheric pressure, temperature, and

vertical distribution of water will change

between before and after computing the

cloud microphysical processes

 The data-driven cloud model predicts

atmospheric state changes per unit of time



Experimental Design

 Atmospheric model on Odyssey
 NICAM : global non-hydrostatic model with an icosahedral grid 
 Resolution : horizontal : 10240, vertical : 78

 ML on Aquarius
 Framework : PyTorch
 Method : Three-Layer MLP
 Resolution : horizontal : 10240, vertical : 78

 Experimental design
 Phase1: PyTorch is trained to reproduce output variables from 

input variables of cloud physics subroutine.
 Phase2:Reproduce the output variables from Input variables 

and training results

 Training data
 Input : total air density (rho), internal energy (ein), density of 

water vapor (rho_q) 
 Output : tendencies of input variables computed within the

cloud physics subroutine

Atmospheric Model
(Convection-Scheme ON)

Cloud physics
subroutine

Input

Output

ML App
(Python)

Output

Phase1: Training phase Phase2: Test phase

Simulation Node

Odyssey

Data/Learning Node

Aquarius

Δ�ℎ�

Δ�

Δ���

Δ�

Δ�ℎ�_


Δ�



Test calculation

Total air density

Internal energy

Density of 
water vapor

Input Simulation Output

 Compute output variables from input variables and PyTorch
 The rough distribution of all variables is well reproduced

 The reproduction of extreme values is no good

ML outputSimulations Prediction by ML/NN
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Near Future Plan: Shifting to GPUs

• U.Tokyo is shifting to GPUs/Accelerators in next 10 years

– Maximum performance under constraint of power consumption

• Wisteria-Mercury (October 2023)

– GPU Cluster, for supporting “Aquarius”

– Prototype of OFP-II (128+ GPU’s, 32+ nodes)

• OFP-II (April 2024)

– Successor of OFP (JCAHPC, U.Tsukuba & U.Tokyo), 200+PF

– Group-A (CPU+GPU), Group-B (Only CPU)

• Same GPUs as those of Mercury

• CPUs in Group-A and Group-B could be different

• Porting codes of 3,000+ users of OFP to GPU is the most critical issue

– Starting this Fall

35
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Ipomoea-01 25PB

Ipomoea-02

Ipomoea-
03

Oakforest-
PACS (Fujitsu)

25.0 PF
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• Platform for “Digital Twin”, “S+D+L”

• GPU Cluster + CPU Cluster: GPU-Focused

• We are thinking about introducing DPU, IPU, Quantum-Inspired Devices 

etc. for supporting workloads for (D+L)

 We are also considering the introduction of multiple types of GPUs

• We have been using Fujitsu’s Digital Annealer since 2019: Combinatorial 

Optimization

• Programming Environment & Communication Library for Integration of 
HPC and Such Devices are needed.

 We can extend the idea of h3-Open/SYS-WaitIO


