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Features of Multigrid (MG) Methods

v’ Scalable multilevel method for solving linear equat lons

v GMG (Geometrical Multigrid) and AMG (Algebraic Multigrid)

v Number of iterations until convergence for multigri d method is
kept constant as the problem size changes, Comp. Ti  me = O(N)

v The parallel multigrid method is expected to be one of the most
powerful tools on exa-scale systems.

w  smoothing
-\s, (relaxation)

—_——

v Applied to rather well-conditioned
problems (e.g. Poisson’s egn’s) i S &
O Many sophisticated methods for real-world ke

prolongation
(interpolation)

applications are under development (next g
presentation) \
v' MG is scalable, but there are many xS A
things to be done towards exascale Eror approvimated o S
a smailer coarse gri

computing [LLNL]



Overview (1/3)

* The parallel multigrid method is expected to play an important role in
scientific computing on exa-scale supercomputer systems for solving
large-scale linear equations with sparse coefficient matrices.

* Because solving sparse linear systems is a very memory-bound process,
efficient method for storage of coefficient matrices is a crucial issue.

 In the previous works, authors implemented Sliced ELL method to
parallel conjugate gradient solvers with multigrid preconditioning (MGCG)
for the application on 3D groundwater flow through heterogeneous
porous media (pGW3D-FVM), and excellent performance has been
obtained on large-scale multicore/manycore clusters.




PGW3D-FVM: Target Application
[KN IEEE ICPADS 2014] (Best Paper Award)

« 3D Groundwater Flow via Heterogeneous Porous Media
* Finite-Volume Method on Structured Cubic Voxel Mesh

« Poisson’s equation  O[(A(x,y,z)0¢)=q
— Randomly distributed water conductivity (A)
— A=10°~10%°, Average: 1.00

o Conjugate Gradient preconditioned by Multigrid (MGC G)
— Geometric Multigrid (GMG): Octree-based
— IC(0) Smoother, V-Cycle
— Additive Schwartz Domain Decomposition

« Sliced ELL for Storage of Sparse Matrices

e Fortran90, MPI/OpenMP

Nakajima, K., Optimization of Serial and Parall@@munications for Parallel
Geometric Multigrid Method, Proceedings of the 2[RE International Conference
for Parallel and Distributed Systems (ICPADS 204332, Hsin-Chu, Taiwan, 2014

ELL

Sliced
ELL

- =




Effects of Sliced -ELL 20.0
® CRS

on MGCG/pGW3D-FVM || 20

| AELL+CGA
[KN ICPADS 2014] 150 I 4 sliced ELL+CGA oo’

* Fujitsu PRIMEHPC FX10 o ©®
— Weak-Scalingup to 4,096-nodes, S100 | P o ® AA AAﬁ_
655,536-cores s ° o | é % % A A AA

— max 17,179,869,184 DOF W
— HB 8x2 50 T
e 1.9x performance@655,536-cores: | Very Scalable for Weak Scaling

(Sliced ELL+CGA) over CRS
0.0

. MGCQ: Sparse Linear Solver 100 1000 10000 100000
— Typical Memory-Bound Procedure
— Effects of Memory Access/Matrix Storage are significant

CORE#

Nakajima, K., Optimization of Serial and Parallef@munications for Parallel Geometric Multigrid Meth Proceedingst .~
the 20th IEEE International Conference for Parated Distributed Systems (ICPADS 2014) 25-32, H&m, Taiwan, 204 *-




Overview (2/3)

 In the present work, authors introduced SELL-C-o with double/single
precision computing to the MGCG solver, and evaluated the performance
of the solver with OpenMP/MPI hybrid parallel programing models on the
Oakforest-PACS (OFP) system at JCAHPC using up to 2,048 nodes of
Intel Xeon Phi .

e Because SELL-C- ¢ is suitable for wide-SIMD architecture, such as
Xeon Phi, improvement of the performance overthes  liced ELL was
more than 35% for double precision and more than 45 % for single
precision on OFP.

 Finally, accuracy verification was conducted based on the method
proposed by authors for solving linear equations wi th sparse
coefficient matrices with M -property.



Overview (3/3)

e This is one of the first examples of SELL-C- ¢ applied to
forward/backward substitutions in ILU-type smoother of multigrid
solver with double/single precision computing.

e The effect of SELL-C- o for computing with single precision (FP32) is
very significant.

10



e Background & Overview
— Multigtrid Methods
—Overview of Previous/Present Works

« SELL-C-ag with Double Precision Computing
« Computing in Double/Single Precision

« Accuracy Verification

e Summary



12

Target System: Oakforest-PACS (OFP)

 Intel Xeon Phi (Knights Landing, KNL), OPA , Fujitsu
« 8,208 nodes, 25+PF, 22" in TOP 500 (November 2020)
e Operated by JCAHPC (U.Tsukuba & U.Tokyo)

Engineering

B Engineering

M Earth/Space

® Material

M Energy/Physics

B Info. Sci. : System
Earth/Space B Info. Sci. : Algrorithms
Sciences ® Info. Sci. : Al

Energy/ m Education
_y_: hCSSC S Industry
Material Bio
Science Bioinformatics

Social Sci. & Economics

PACS

i
9p]
O

O

s
@®
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Main Purpose of the Present Work: SELL -C-o

e Applying SELL-C- o to MGCG Solvers in pGW3D-FVM
— Currently with Sliced ELL

o Sliced ELL and SELL-C-o have been mostly applied to SpMV, or Gauss-
Seidel Iterative Solvers/Smoothers

* Implementation to
Forward/Backward
Substitution in ILU-type
Smoothers is very difficult

— First example of Sliced ELL [KN
IEEE ICPADS 2014]

— This is the first example of
SELL-C-o

lc

CRS ELL Sliced ELL SELL-C-¢



Constructing SELL-C-o

1. Pick chunk size C (guided by
SIMD/T widths)

2. Pick sorting scope o

3. Sortrows by length within
each sorting scope

4. Pad chunks with zeros to
make them rectangular

5. Store matrix data in “chunk
column major order”

“Chunk occupancy”: fraction of
“‘useful” matrix entries

N‘HZ

sorted

sorted

Width of chunk i: [;

SELL-6-12
8=0.66

> Sorting scope ¢

%

> Chunk size C

s

_ N+C—-1n>»cl
Pworst = CN T

[Kreutzer, Hager, Wellein,

SIAM SISC 2014]

14
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Main Purpose of the Present Work: SELL -C-o

* Applying SELL-C-0 to MGCG Solvers in pGW3D-FVM
— Currently with Sliced ELL

o Sliced ELL and SELL-C-o have been mostly applied to SpMV, or Gauss-
Seidel Iterative Solvers/Smoothers

e Implementation to
Forward/Backward
Substitution in ILU-type
Smoothers is very difficult

— First example of Sliced ELL
[KN IEEE ICPADS 2014]

— This is the first example of |
SELL-C-o CRS ELL Sliced ELL




Coalesced , CM-RCM(2)
« CM-RCM with 2 colors: CM-RCM(2)

16

— Number of iterations will increase with 2-colors, compared to RCM (current method)
— Performance on OFP with multithreading is better with fewer colors

» Loop length
— Implementation of SELL-C-0 is easier than RCM

» Coloring part is not parallelized, but implementation of CM-RCM(2) is easy

Red-Black , 2fadDMC CM-RCM(2), Coalesced

42 7 37 3 34 1 33

22
57
28
62
32

15
51
23
58
29
63

14 43 8 38 4 35
10

44 9 39 5
16 45 10 40
52 17 46 11
24 53 18 47
59 25 54 19
30 60 26 55

2
36
6
41
12
48
20



Forward Substitution: 2
Sliced-ELL

Row-wise

(a) Sliced ELL: Row-Wise

1$omp parallel prlvate (icol, =)
icol= NCOLORto
(Operations)
1$omp do
do (Loops:Meshes: Row-Wise)
do (Loops:Non-Zero Off-Diag’ s: j=1, 6)
(Operations)
enddo

enddo
1$omp end parallel

Column Column
_Lolumn _Column
— >

; — L
o === 32
o — nd

R Wlse

Column-Wise

Row-wise

(b) SELL-8-8/Row-Wise (SCS-a)

1$omp paraIIeI Erlvate (icol, *=*)
icol=N
(Operatlons)
1$omp do
do ELoops Threads: ip= 1, PEsmpTOT)
Loops :Blocks)
|$omp simd
do (Loops SIMD: k= 1, 8)
o (Loops:Non-Zero Off-Diag’ s: j= 1, 6)
(Operatlons)
enddo
enddo
enddo

enddo
1$omp end parallel

nd Color of CM -RCM(2)
SCS-a (SELL-C-0)

SCS-b (SELL-C-0)
Column-wise

(c) SELL-8-8/Column-Wise (SCS-b)

1$omp paraIIeI grlvate (icol, ==+)
icol= N
(Operatlons)
1$omp do
do ELoops Threads: ip= 1, PEsmpTOT)
Loops:Blocks)
|$omp simd
do (Loops SIMD: k=1, 8)
(Operat|ons Substitutions-1)
enddo
do (Loops Non-Zero Off-Diag’ s: j=1, 6)
1$omp si
do (Loops SIMD: k= 1, 8)
(Operations)
enddo
enddo
1$omp simd
do (Loops SIMD: k=1, 8)
(Operations:Substitutions—2)
enddo
enddo

enddo
1$omp end paral lel

More Expensive !

17
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Parallel Multigrid Methods

[ e HHNEEEEEEEER (- HEEDEEEEEEEER
- [HHNIEEEEEREN -~ [ HNNIEEEERNRR
=5 (1] (] [ () [0 [0 [ [ (0 ) [ [ e [l [ [ A EEEEEERE
-2 (1] (18] [ (6 [0 [ [ (6 (6 6 (6 [ Leve'mZDDDDDDDDDDDD
Level=m-1 |:| |:| r(:o:mmcg)rsv;e; 1 |:| D

 Communication overhead Coarse grid solver on

at Coarser Levels I could be reduced
Level=m |:| |:| |:| D a single MPI Process
M i L T T TC JTL JL | » Coarse grid solver is more (mult?—threaded
ach MPI= 1 ‘ l ‘ l ‘ l J l J expensive than original further MG) '

r approach.

Coarse Wl © !f process number is larger, .
(]
3
(]

this effect might be

Coarse Coarse grid solver on a

single core (further MG)

significant

Original Approach ‘ gggg’ga%gﬂ (CGA)
[KN 2010] [KN 2012]




Summary of Configurations

« pGW3D-FVM, Weak Scaling
— CGA(Coarse Grid Aggregation): Single Level
» Oakforest-PACS (OFP), ~2,048 nodes

— Flat, MC-DRAM only
— 64-cores on each node
* HB 4x16 (4-threads x 16-proc’s), HB 8x8

— Problem Size: 64x32x32 on each core (max: 8,589,934,592 DOF), Best for 5-

Runs, e=1012
o Comparison between (CRS, Sliced ELL) and SCS (SELL-C-o0, C=0=8)

— 64-bit (Double Precision) x 8 = 512 bit

— SCS: Switching to Sliced-ELL if the problem size is smaller than (C (=8)) for each
color/thread

— Sliced ELL for Coarse Grid Solver of SCS

— 20% improvement is expected by SCS over Sliced ELL, based on preliminary
results

19



Results: Time for MGCG

8-nodes, HB 4 X 16, 33,554,432 DOF

6.00 [

i . mlev.l mlLev.2 mLev.3 mlLev.4 mRest

S
.
O
O
2|
c
.
o
.

1]

CRS ELL SCS-a:

C=8

SCS b:

SCS-b:
C=128

Each Level of Smoothing

Rest

— Coarser Level Smoothers
— CG except MG (SpMV etc.)
— Communication

— Coarse Grid Solver
Improvement over CRS

— Sliced ELL:36.6%

— SCS-a:79.4%

— SCS-b:84.9% (C=8)

— SCS-b: 90.1% (C=128)
Level-1 (Finest)

— 46.6%, 101.3%, 108.7%, 107.8%

Sliced ELL=SCS

— SCS-a:31.4%

— SCS-b:35.4% (C=8)

— SCS-b: 39.2% (C=128)

20
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Weak Scaling: up to 2,048-nodes
HB 4x16, Time for MGCG , Down is Good

10.00

—0O—CRS-d
—o—ELL-d

- ——SCS-a(C
8.00 [| —e—SCS-b(C
I -/v- SCS-b(C=
—— SCS-b(C=

O

)-d
)-d
28)-d
28)-s

8
8
1
1

\

6.00 |

4.00 |

e
)
o
O
A2,
c
=
)
O

200 |

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
Core #




Weak Scaling: up to 2,048-nodes
SCS-b (C=0=8), Time for MGCG , Down Is Good

6.00 6.00
- B Smoother etc. - m Smoother etc.
m Communication ® Communication
N ®] m Coarse Grid - m Coarse Grid

o 4.00

o i

O G I

]

(7)) @ i
C 2.00

@] i

| I
: 0.00

1024 2048 4096 8192 16384 32768 65536 131072 1024 2048 4096 8192 16384 32768 65536 131072
Core # Core #
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e Summary



Approximate Computing with
Low/Adaptive/Trans Precision

e Mostly, scientific computing has been conducted using FP64 (double
precision, DP)

— Sometimes, problems can be solved by FP32 (single precision, SP) or lower
precision

e Lower precision may save time, energy and memory

« Approximate Computing

— Originally for image recognition etc. where accuracy is not necessarily
required

— Also applied to numerical computations

« Computations by lower precision and by mixed precision may provide
results with less accuracy

24



P3D: Steady State 3D Heat Conduction by FVM

+ —

Of{A0¢)+ f =0 (1
e 7-point Stencill NZ

* Heterogenous Material Property

— A,/ A, is proportional to the condition Z‘ y/: <—»/NY
number of coefficient matrices NX

« Coefficient Matrix
— Sparse, SPD /]
« ICCG Solver 1
e Fortran 90 + OpenMP
« CM-RCM Reordering
. FP64 (Double), FP32 (Single), FP16 A
(Half) (just for preconditioning)

X

AZ

25
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Ratio of FP32(SP)/FP64(DP)
Iterations@ & Time A for ICCG

3.00
A/A,, 1283 DOF, CRS | . .
<’ ' - lterations ATime
Ratio<l = FP32is faster | 250 | 2 1
o
Ll 200 f
A o °
& 150 | o
A, 5 * . ¢ ¢ A
1.00
A "% : o
Xl o050 . A A o -
OfAOg)+ f =0 . et e e
Intel Xeon BDW @ 1.E+01 1.E+02 . 1.E+03 1.E+04 1.E+05 <1.E+Oa
1 Node: 18 cores X 2 socC’s Ratio of A,/ A, '

= [KN et al. 2018]
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Ratio of FP32(SP)/FP64(DP)

lterations@ & TimeA for ICCG
A /A5, 1283 DOF, CRS
Ratio<l = FP32 is faster

3.00

@lterations ATime ®

Al

A
N

Ratio of FP32/FP64

Al . A
0.50 \ AN /\ A A
HA0g)+ 1 =0 o b . MECAESCE V|
|nte| Xeon BDW 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

: ’ Ratio of A,/ A
1 Node: 18 cores x 2 socC’s 11 42 [KN et al. 2048]
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Ratio of FP32(SP)/FP64(DP)
Iterations@ & Time A for ICCG

3.00
A/1,, 1283 DOF, CRS | . .
<’ ' - lterations ATime
Ratio<l = FP32 is faster | 250 | ® 1
© :
& 200 f_+20% iterations
A S by FP32 o
& 1.50 o
A 5 8 o o e 2
1.00
A = ' A
1 I |
- o 0) I
0[ADg)+ f =0 o p A0Sk Time by PRS2 |
Intel Xeon BDW 1E+00  1.E+01 1.E+02. 1.E+03 1.E+05 1.E+0€
1 Node: 18 cores X 2 socC’s Ratio of A,/ 4,

= [KN et al. 2018]



Ratio of FP32(SP)/FP64(DP)

lterations@ & TimeA for ICCG
A /A5, 1283 DOF, CRS
Ratio<l = FP32 is faster

S

ol

L

A 3
i

A =

o

A 3
ad

00 ADg)+f =0

Intel Xeon BDW
1 Node: 18 cores x 2 socC’s

3.00

2.50

2.00

150 }

1.00 |

0.50

0.00

1P

@lterations ATime /1\
_ +20% iterations / /
by FP32 <'/
¢ ° ° ° o %
' (A/

oA A8 BNy
- -40~-45% Time by FP32

1.E+00 1.E+01 1.E+02 1.E+03 BEE=SfeZS 1.E+05 1.E+0€

Ratio of A,/ A,

[KN et al. 2018]



Results on Intel Xeon BDW A=A,

N=1283, M: CPU, | : Memory , @:Time

400.00

300.00 r
3
o
=)
= L
£ 200.00
>
(2]
c
<}
@]
o}
C;) L
a 100.00 r
0.00

Power: Watt

=
.«

FP32 FP64
Single Double

1 1.60

S1 0.80
%]

180 700.00

1 1.40

> i
S i
{1 1.00% 400.00 |

£
=1

2 200.00

1 0404

1 920 100.00

0.00 0.00

600.00 [

2 [
6 300.00
3 r
1 0.60 &

Energy: Joule |

o

N FP32
Single

30

[Sakamoto et al. 2020]

1.80

1 1.60
1 1.40
1 1.20
4 1.00
¢4 0.80
2]

1 0.60
1 0.40

4 0.20

0.00

FP64
Double EaS
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» QOakforest-PACS (OFP) -I-arg et Platforns:

— Intel Xeon Phi (Knights Landing, KNL), Fujitsu
— IHK/McKernel
— 8,208 nodes, 25+PF, 22t in TOP 500 (Nov.2020)
— Operated by JCAHPC (U.Tsukuba & U.Tokyo)

e Oakbridge-CX (OBCX)
— Intel Platinum 8280 (Cascade Lake, CLX), Fujitsu
— 1,368 nodes (2,736 sockets), 6.61 PF, 69" in TOP 500 (Nov.2020)

<4 JCAHPC

BN |
OO
g oF
(:’ ?}ilﬁﬁiﬂngﬁ 8

5 s

University of Tukuba




Overview of Each Node (OFP & OBCX)

Oakforest-PACS (OFP) Oakbridge-CX (OBCX)

Name in this Paper
Architecture

Frequency (GHz)
Core #/CPU (socket)

CPU (socket) # per node

Peak Performance (GFLOPS) per
node

Memory Size (GB) per node

Memory Bandwidth/Socket
(GB/sec, STREAM Triad)

Peak Performance per Core
(GFLOPS)

Memory Bandwidth per Core
(GB/sec., STREAM Triad)

OFP

Intel Xeon Phi 7250
(Knights Landing, KNL)

1.40
68
1

3,046.4

MCDRAM: 16
DDRA4: 96

MCDRAM: 490
DDR4: 84.5

44.8

MCDRAM: 7.21
DDR4: 1.24

OBCX

Intel Xeon Platinum 8280
(Cascade Lake, CLX)

2.70
28
2

4,838.4

192
202.0
86.4

3.61



Time for MGCG: |, _

SCS-b (C=0)

Normalized by ¢
SELL-8-8 (DP) &£
8-nodes §
OFP(HB 4x16), <
OBCX (6x8) =

All variables, vectors and
matrices are stored in
double precision for

FP64, and all of them are
stored in single precision
for FP32

33

1.00 |
0.80 |
0.60 |

40 |

C=4

® OFP-Double

m OBCX-Double
Il I =

8 16 32

= OFP-Single
OBCX-Single
[ I

64 128 256 512 1024 2048




Time for MGCG:

SCS-b (C=0)
Normalized by
SELL-8-8 (DP)

8-nodes
OFP(HB 4x16),
OBCX (8x8)

Optimum Parameters

e DP: C=0= 8
e SP: C=0=128

120 |
1.00 |
0.80 |
0.60 |
0.40 |
0.20 |

0.00 |

| C=4 8
Down is Good

34

® OFP-Double
m OBCX-Double
I

16 32

= OFP-Single
OBCX-Single
[ I

64 128 256 512 1024 2048




DP=SP

e |teration number
does not change

* <0.1% relative error

* (SP/DP) time ratio
e 0.70 for OFP
* 0.55-0.60 for OBCX

1.20

1.00

0.80

0.60

0.40

0.20

0.00

| C=4 8
Down is Good

35

® OFP-Double

16 32

m OBCX-Double
Il I =

= OFP-Single
OBCX-Single
[ I

64 128 256 512 1024 2048




Results: Time for MGCG
8-nodes, OFP (HB 4 X 16)

FP64, Double FP32, Single

6.0 | 6.00 |

i . Elev.l mlLev.2 mLev.3 = Lev.4 mRest 5.00 i Hlev.l mlLev.2 mLev.3 mlLev.4 mRest
- . 4.00 |

(=)

(=)

Down is Good

¢ [
$ 3.00 .
B EE T .
0 200 | [ ] .
00f ¢ 000 | =

CRS ELL SCS-a: SCS-b: SCS-b: CRS ELL SCS-a: SCS-h: SCS-b: '+
C=8 C=8 C=128 C=8 C=8 C=128



Time for MGCG, 8-nodes , OFP (HB 4 X 16)

Improvement over CRS (MGCG solver, Level-1 of Smoot  her)

Double Precision
(FP64)

Single Precision

(FP32)

Sliced ELL 36.6%, 46.6% 15.6%, 44.7%
SCS-a (C=0=8) 79.4%, 101.3% 58.7%, 81.0%
SCS-b (C=0=8) 84.9%, 108.7% 90.9 %, 152.2%

SCS-b (C=0=128)

90.1%, 107.8%

137.5%, 174.9%

37
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Results: Time for MGCG
8-nodes, OBCX (HB 6 x 8), Down is Good

FP64, Double FP32, Single

4.00 4.00

Hlev.l mlev.2 ®lLev.3 Lev.4 mRest

R EEE

mlev.l ®mlev.2 mLev.3 Lev.4 mRest
2.00

) :I I I I I:

0.00

CRS ELL SCS-a: C=8 SCS-h: C=8 SCS-b: CRS ELL SCS-a: C=8 SCS-b:C=8 SCS-b;
C=128 C=1251 .-

Sec.

qun |s Goqd

0.0




Weak Scaling: up to 2,048-nodes of OFP
(DP: C=0=8, SP: C=0=128)

Time for MGCG: SCS-b

DP: C=0=8, SP: C=0=128

MC}M--&- HB 4x16-d

Q/— —A—HB 4x16-s
——HB 8x8-d

—O—HB 8x8-s

+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
Core #
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Weak Scaling: up to 2,048-nodes of OFP
(DP: C=0=8, SP: C=0=128)

Improvement over CRS

Time for MGCG: SCS-b

DP: C=0=8, SP: C=0=128

5.00
400 | 7\ S 3 KAX\A_A\&&—A\A
AN O N
. A o - . Iy
3] L — - I - -
a0 ’ O RS E St ae =
’ 0 : i ‘000..,,',\‘
2.00 ~ —+—HB 4x16-s | %: i
®—HB 8x8-d : [ —e—ELLd -4-5CS-a(C=8)d —&—SCS-b(C=8)-d
[ —O—HB 8x8-s H —0—ELL-s ——SCS-a(C=128)-s —A—SCS-b(C=128)-
1.00 T Y S P S SR Y 0.0 e ¥ B e
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Weak Scaling: up to 2,048-nodes of OFP,
HB 4x16, Time for MGCG , Down is Good

FP64: C=0=8 FP32: C=0=128
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Approximate Computing with
Low/Adaptive/Trans Precision

» Accuracy verification is important, especially for computation with
lower/mixed precision.

» A lot of methods for accuracy verification have been developed for
problems with dense matrices
— But very few examples for sparse matrices & H-matrices

* Generally speaking, processes for accuracy verification is very
expensive
— Sophisticated Method needed
— Automatic Selection of Optimum Precision by Technology of AT (Auto Tuning)

» Accuracy Verification of Sparse Linear Solvers [Oqita, Nakajima 2019]
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New Algorithm for Verification
[Ogita, Rump, Oishi 2005] [Ogita, Nakajima 2019]

1.

Y

Solve a discretized linear system Ax = b.

2. Solve a linear system Ay = e.
3.
4. Computer = b — AX with an error bound.

Verify M-property of Ausing y. (3 >0 = 49 >0)

» 7:a computed residual, e,: an error bound of 7
Solve a linear system Az = 7.

. Compute an error bound using

X=Xl < |12l + —

[V loo (7 = AZ|| oo+l €]l o)
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Results: New Alg. for Verification (128  3)
[Ogita, Rump, Oishi 2005] [Ogita, Nakajima 2019]

= = 1.E+00 .
p=0@z Zox —| Previous bound
T —e—Improved error bound
1.E-02 H—a—Maximum relative error - New error bound
Al [ ] -4 Relative residual norm
1.E-04

NZ
>

1.E-06
Al v 1.E-08
T better e
O ACg)+f =0 1b — AZ]|;
1.E-12 ”b”2

1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6
lambda1 / lambda2

Computed error bounds are significantly improved!




Results on OBCX (Intel Xeon CXL) (1/2)

FP64, Accuracy Verificationl takes 10% longer
A A, =109~10°, CRS, N=1283

NZ

p=0@z=7,,
-

Time (sec.)

8.00 [

- M :P3D Solve

7.00

6.00

5.00
4.00
3.00
2.00
1.00

000 L

l Acc. Verl.

ni

1.00.E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06
Lambdal/Lambda2
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Results on OBCX (2/2) o YL o= A(R+2)|
Accuracy verification for FP32 [x=X, <], + 1-[e- A
has failed, if A,/A, =10 -

1.E+01

NZ AZ‘ 1.E+00
YA _ 1E-01

z y . /NY AX
L , NX

1.E-02

Error (%)

O Relative Error between 1.E-03
FP32 & FP64 at @ LED

A Max. Relative Error Bound .
1.E-05

for FP32 obtained from LE+00 1.E+01 1E+02 1.E+03 1E+04 1.E+05 1.E+06
Accuracy Verification Lamdal/Lambda?2 .



Accuracy Verification in pGW3D

15t Application of the New
Verification Method [Ogita,
Nakajima 2019] to Distributed
Parallel Computing

Two Cases on OFP (HB 8x8)

— Small: 128 meshes, 1-node

— Large: 1,024x1,024x512 meshes,
128 nodes

DP only (SP failed in Accuracy

Verification)
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Summary

SELL-C-o with double/single precision computing in the MGCG solver
using up to 2,048 nodes of Intel Xeon Phi.

Improvement of the performance by SELL-C-o over the sliced ELL
— 35+% for DP, 45+% for SP on OFP.
— The effect of SELL-C-o for computing with SP is very significant

Accuracy Verification (Preliminary)

The first example of SELL-C-o applied to forward/backward substitutions
In ILU-type smoother of multigrid solver with double/single precision
computing.

Future Works

— SELL-C-o for Coarse Grid Solver
— Improvement of Accuracy Verification



