Stencil-based applications such as CFD have succeeded in obtaining high performance on GPU supercomputers. The problem sizes of these applications are limited by the GPU device memory capacity, which is typically smaller than the host memory. On GPU supercomputers, a locality improvement technique using temporal blocking method with memory swapping between host and device enables large computation beyond the device memory capacity. However, because the loop management of temporal blocking with data movement across these memories increase programming difficulty, the applying this methodology to the real stencil applications demands substantially higher programming cost. Our high-productivity stencil framework automatically applies temporal blocking to boundary exchange required for stencil computation and supports automatic memory swapping provided by a MPI/CUDA wrapper library. The framework-based application for the airflow in an urban city maintains 80% performance even with the twice larger than the GPU memory capacity and have demonstrated good weak scalability.