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Background

Modern processors are fast with number crunching, but the memory speeds 
lag behind: The “memory wall” problem
Most scientific computing applications are memory-traffic bound
Unstructured meshes are needed for modeling realistic problems, but 
irregular memory accesses are inevitable

How to alleviate the challenges of achieving performance for unstructured-
mesh computations?



This talk presents some recent research activities at Simula

Re-ordering of mesh entities
Automated code generation for GPU computing
Re-purposing an ML-specific processor for unstructured mesh computation
Physics-guided mesh partitioning
Detailed modeling of heterogeneous point-to-point MPI communication

Joint work with J. Trotter, A. Thune, L. Burchard, K. Hustad, J. Langguth, S. Funke, A. Rustad, 
S.-A. Reinemo, T. Skeie



Re-ordering of mesh entities may improve memory 
performance

Numerical discretization (FEM, FVM) over unstructured meshes will 
inevitably lead to irregular memory accesses
Proper re-ordering of the mesh entities may improve data reuse in the 
caches, thus reducing memory traffic



Re-ordering example 1: sparse matrix-vector multiplication

Matrix A is sparse, stored in the CSR format (irows, jcols, A_values)
Several re-ordering strategies may improve memory performance of SpMV
• Reverse Cuthill-McKee re-ordering
• Graph partitioning-based re-ordering

• Nested dissection

• Others

#pragma omp parallel for
for (int i=0; i<num_rows; i++) {
double tmp = 0.0;
for (int j=irows[i]; j<irows[i+1]; j++)
tmp += A_values[j] * x[jcols[j]];

y[i] = tmp;
}

y=Ax



Re-ordering example 1: sparse matrix-vector multiplication

Before re-ordering After re-ordering



A new publication at SC23



Re-ordering example 2: finite element assembly procedure
1. Gather cell coordinates

and coefficients
2. Compute element

vector and matrix
3. Update global

vector and matrix

1. Reverse Cuthill-McKee re-ordering of the 
mesh nodes

2. Re-ordering of the mesh cells in ascending 
lexicographic order according to their node 
indices



Re-ordering example 2: finite element assembly procedure



Automated code generation can simplify GPU programming

GPU programming for numerical computations can be challenging
Automated code generation can alleviate the programming challenge
Combination of high-level domain-specific language and special compiler
The FEniCS framework has used automated code generation to deploy 
finite element computation to CPU clusters in a user friendly way
We recently enabled automated GPU computing for FEniCS
• GPU offloading of the finite element assembly procedure

• Seamless coupling with GPU-capable linear algebra backends



Automated generation of GPU-accelerated assembly code

1 elem = FiniteElement("Lagrange",tetrahedron,1)
2 coords = VectorElement("Lagrange",tetrahedron,1)
3 mesh = Mesh(coords) 
4
5 V = FunctionSpace(mesh, elem) 
6 u = TrialFunction(V)
7 v = TestFunction(V)
8 f = Coefficient(V) 
9 kappa = Constant(mesh) 
10
11 a = kappa * inner(grad(u), grad(v)) * dx 
12 L = inner(f, v) * dx 

2. High-level user code (Python)

Form language (UFL)

Parser

Code generator

GPU finite element code

!"∇u ⋅∇v dx = ! fv dx

3. Form compiler

1. Mathematical equations



Automated GPU acceleration of finite element assembly

Best CPU performance Best GPU performance



Automated GPU acceleration of entire FEM computation



• Massively parallel architecture
1472 tiny cores per chip
Each core has its private SRAM
No chip-level shared memory

• Special programming style
The computation needs to be formulated as a
“dataflow” graph

Nodes: small computational tasks for the cores
Edges: flow of data between the nodes

Inter-core communication is “implied”

• IPUs: originally designed for ML
Simula ported several scientific computing 
applications to IPUs:
heart simulation, graph analytics,
sequence alignment, etc.

Re-purposing Graphcore intelligence processing units (IPUs)



A simple model of cardiac electrophysiology

• The monodomain model of cardiac electrophysiology

• Operator splitting results in a “PDE” part and an “ODE part
• PDE part: a 3D diffusion equation
• ODE part: a system of nonlinear ODEs at every mesh entity

• Also subject of the JHPCN project between Simula & U. Tokyo



Porting a simple cardiac simulator to Graph IPUs

In comparison with using Nvidia’s A100 GPUs
• The PDE part of the cardiac simulator runs 

faster on IPUs
• The ODE part is slower on IPUs



• Partitioning an unstructured 
computational mesh is non-trivial

• Mesh partitioning affects the 
parallelization overhead, may also 
impact the numerical performance

• When mesh entities have 
heterogeneous connectivity 
strength, the partitioning problem 
needs special care

Physics-guided mesh partitioning

Mesh partitioning is the first step of parallel computing



Example: Parallel solution of the “black-oil” reservoir model

• Large-scale reservoir simulations require parallelization
• Parallel preconditioners are essential for the iterative linear solvers, but 

their effectiveness is sensitive to mesh partitioning
• Mesh partitioning must therefore balance between parallel efficiency 

and numerical efficiency



• Cell-centered finite volume 
discretization

• Transmissibility across the 
boundary of two computational 
cells is a good measure of numerical 
connectivity

• Tightly connected cells should 
ideally not be divided between two 
subdomains

Transmissibility as a measure of numerical connectivity



• The computational mesh is first 
translated to a graph, each cell 
becomes a vertex

• If two cells share a face, the two 
corresponding vertices are 
connected by an edge in the graph

1. Each edge has uniform weight
2. Each edge is weighted by the 

transmissibility itself
3. Each edge is weighted by the 

logarithmic of transmissibility

Three graph partitioners used for mesh partitioning

!!

!"

!#! !##

!$
!#%

!&
!' !(

!)
!#*

!%

!#

!#"

!! !"" ⊂ $



Comparing the edge-weight schemes using 64 MPI processes



Comparing the edge-weight schemes using 64 MPI processes



Comparing the edge-weight schemes using 64 MPI processes



• The inter-connect on a parallel system
is often heterogeneous

• The actual process-to-process 
communication is also heterogeneous

• Detailed understanding of the 
communication overhead is important

• State-of-the-art models have 
weaknesses

• We have developed new models

Detailed modeling of communication overhead



The state-of-the-art models have several weaknesses

! " = $ + &
'(

Postal model:

The max-rate model [Gropp et al. 2016]:

! ",* = $ + +,&
-./(+,'(12,'(345)



Our new model is based on a “staircase” principle
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Staircase model
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Mixed intra-node bandwidth estimate:

!"!"#$%($, &$) = &!
' 	!"!"
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"$$

!"#$#%& = !""(#)%*($+, + !""(#,)*($+,
General case estimate:

The Staircase model works in more general cases when messages are 
mixed intra-socket, inter-socket, and inter-node



Example of detailed modeling of communication overhead



Concluding remarks

New research needed for mesh re-
ordering & partitioning

Further developments of automated code 
generation for accelerated computing

Important international collaborations
• JHPCN project with U. Tokyo
• SparCity project (EuroHPC)


