
Xing Cai

Simula Research Laboratory

&
University of Oslo, Norway

November 29, 2023

Towards High-Performance
Unstructured-Mesh
Computations

Background

Modern processors are fast with number crunching, but the memory speeds
lag behind: The “memory wall” problem
Most scientific computing applications are memory-traffic bound
Unstructured meshes are needed for modeling realistic problems, but
irregular memory accesses are inevitable

How to alleviate the challenges of achieving performance for unstructured-
mesh computations?

This talk presents some recent research activities at Simula

Re-ordering of mesh entities
Automated code generation for GPU computing
Re-purposing an ML-specific processor for unstructured mesh computation
Physics-guided mesh partitioning
Detailed modeling of heterogeneous point-to-point MPI communication

Joint work with J. Trotter, A. Thune, L. Burchard, K. Hustad, J. Langguth, S. Funke, A. Rustad,
S.-A. Reinemo, T. Skeie

Re-ordering of mesh entities may improve memory
performance

Numerical discretization (FEM, FVM) over unstructured meshes will
inevitably lead to irregular memory accesses
Proper re-ordering of the mesh entities may improve data reuse in the
caches, thus reducing memory traffic

Re-ordering example 1: sparse matrix-vector multiplication

Matrix A is sparse, stored in the CSR format (irows, jcols, A_values)
Several re-ordering strategies may improve memory performance of SpMV
• Reverse Cuthill-McKee re-ordering
• Graph partitioning-based re-ordering

• Nested dissection

• Others

#pragma omp parallel for
for (int i=0; i<num_rows; i++) {
double tmp = 0.0;
for (int j=irows[i]; j<irows[i+1]; j++)
tmp += A_values[j] * x[jcols[j]];

y[i] = tmp;
}

y=Ax

Re-ordering example 1: sparse matrix-vector multiplication

Before re-ordering After re-ordering

A new publication at SC23

Re-ordering example 2: finite element assembly procedure
1. Gather cell coordinates

and coefficients
2. Compute element

vector and matrix
3. Update global

vector and matrix

1. Reverse Cuthill-McKee re-ordering of the
mesh nodes

2. Re-ordering of the mesh cells in ascending
lexicographic order according to their node
indices

Re-ordering example 2: finite element assembly procedure

Automated code generation can simplify GPU programming

GPU programming for numerical computations can be challenging
Automated code generation can alleviate the programming challenge
Combination of high-level domain-specific language and special compiler
The FEniCS framework has used automated code generation to deploy
finite element computation to CPU clusters in a user friendly way
We recently enabled automated GPU computing for FEniCS
• GPU offloading of the finite element assembly procedure

• Seamless coupling with GPU-capable linear algebra backends

Automated generation of GPU-accelerated assembly code

1 elem = FiniteElement("Lagrange",tetrahedron,1)
2 coords = VectorElement("Lagrange",tetrahedron,1)
3 mesh = Mesh(coords)
4
5 V = FunctionSpace(mesh, elem)
6 u = TrialFunction(V)
7 v = TestFunction(V)
8 f = Coefficient(V)
9 kappa = Constant(mesh)
10
11 a = kappa * inner(grad(u), grad(v)) * dx
12 L = inner(f, v) * dx

2. High-level user code (Python)

Form language (UFL)

Parser

Code generator

GPU finite element code

!"∇u ⋅∇v dx = ! fv dx

3. Form compiler

1. Mathematical equations

Automated GPU acceleration of finite element assembly

Best CPU performance Best GPU performance

Automated GPU acceleration of entire FEM computation

• Massively parallel architecture
1472 tiny cores per chip
Each core has its private SRAM
No chip-level shared memory

• Special programming style
The computation needs to be formulated as a
“dataflow” graph

Nodes: small computational tasks for the cores
Edges: flow of data between the nodes

Inter-core communication is “implied”

• IPUs: originally designed for ML
Simula ported several scientific computing
applications to IPUs:
heart simulation, graph analytics,
sequence alignment, etc.

Re-purposing Graphcore intelligence processing units (IPUs)

A simple model of cardiac electrophysiology

• The monodomain model of cardiac electrophysiology

• Operator splitting results in a “PDE” part and an “ODE part
• PDE part: a 3D diffusion equation
• ODE part: a system of nonlinear ODEs at every mesh entity

• Also subject of the JHPCN project between Simula & U. Tokyo

Porting a simple cardiac simulator to Graph IPUs

In comparison with using Nvidia’s A100 GPUs
• The PDE part of the cardiac simulator runs

faster on IPUs
• The ODE part is slower on IPUs

• Partitioning an unstructured
computational mesh is non-trivial

• Mesh partitioning affects the
parallelization overhead, may also
impact the numerical performance

• When mesh entities have
heterogeneous connectivity
strength, the partitioning problem
needs special care

Physics-guided mesh partitioning

Mesh partitioning is the first step of parallel computing

Example: Parallel solution of the “black-oil” reservoir model

• Large-scale reservoir simulations require parallelization
• Parallel preconditioners are essential for the iterative linear solvers, but

their effectiveness is sensitive to mesh partitioning
• Mesh partitioning must therefore balance between parallel efficiency

and numerical efficiency

• Cell-centered finite volume
discretization

• Transmissibility across the
boundary of two computational
cells is a good measure of numerical
connectivity

• Tightly connected cells should
ideally not be divided between two
subdomains

Transmissibility as a measure of numerical connectivity

• The computational mesh is first
translated to a graph, each cell
becomes a vertex

• If two cells share a face, the two
corresponding vertices are
connected by an edge in the graph

1. Each edge has uniform weight
2. Each edge is weighted by the

transmissibility itself
3. Each edge is weighted by the

logarithmic of transmissibility

Three graph partitioners used for mesh partitioning

!!

!"

!#! !##

!$
!#%

!&
!' !(

!)
!#*

!%

!#

!#"

!! !"" ⊂ $

Comparing the edge-weight schemes using 64 MPI processes

Comparing the edge-weight schemes using 64 MPI processes

Comparing the edge-weight schemes using 64 MPI processes

• The inter-connect on a parallel system
is often heterogeneous

• The actual process-to-process
communication is also heterogeneous

• Detailed understanding of the
communication overhead is important

• State-of-the-art models have
weaknesses

• We have developed new models

Detailed modeling of communication overhead

The state-of-the-art models have several weaknesses

! " = $ + &
'(

Postal model:

The max-rate model [Gropp et al. 2016]:

! ",* = $ + +,&
-./(+,'(12,'(345)

Our new model is based on a “staircase” principle

N !"#$
1 !"#$(1)
2 !"#$(2)
3 !"#$(3)
4 !"#$(4)
5 !"#$(5)

!!"#$% = &'(!
)*"#(&)

,

!!"#$% = !!&'"#$%+ (&!)(+!&+!"#)
-.$%((&!)

,

!! = # +max	(*!"#$%, *!&#'()

Staircase model

N !"#$
1 !"#$(1)
2 !"#$(2)
3 !"#$(3)
4 !"#$(4)
5 !"#$(5)

!!"#$% = &'(!
)*"#(&)

,

!!"#$% = !!&'"#$%+ (&!)(+!&+!"#)
-.$%((&!)

,

!! = # +max	(*!"#$%, *!&#'()

Staircase model

Our new model is based on a “staircase” principle

N !"#$
1 !"#$(1)
2 !"#$(2)
3 !"#$(3)
4 !"#$(4)
5 !"#$(5)

!!"#$% = &'(!
)*"#(&)

,

!!"#$% = !!&'"#$%+ (&!)(+!&+!"#)
-.$%((&!)

,

!! = # +max	(*!"#$%, *!&#'()

Staircase model

Our new model is based on a “staircase” principle

N !"#$
1 !"#$(1)
2 !"#$(2)
3 !"#$(3)
4 !"#$(4)
5 %&'((5)

)*+,-. = 0123
4567(0)

,

!!"#$% = &'(!
)*"#(&)

,

!!"#$% = !!&'"#$%+ (&!)(+!&+!"#)
-.$%((&!)

,

!! = # +max	(*!"#$%, *!&#'()

Staircase model

Our new model is based on a “staircase” principle

N !"#$
1 !"#$(1)
2 !"#$(2)
3 !"#$(3)
4 %&'((4)
5 !"#$(5)

)*+,-. =)0+,-.+ 12(45647)
9:;<(1)

,

)0+,-. = =247
9:;<(=)

,

!!"#$% = &'(!
)*"#(&)

,

!!"#$% = !!&'"#$%+ (&!)(+!&+!"#)
-.$%((&!)

,

!! = # +max	(*!"#$%, *!&#'()

Staircase model

Our new model is based on a “staircase” principle

N !"#$
1 !"#$(1)
2 !"#$(2)
3 %&'((3)
4 !"#$(4)
5 !"#$(5)

)*+,-. =)0+,-.+ 12(45647)
9:;<(1)

,

)0+,-. =)=+,-.+ >2(4764?)
9:;<(>)

,

)=+,-. = @24?
9:;<(@)

,

!!"#$% = &'(!
)*"#(&)

,

!!"#$% = !!&'"#$%+ (&!)(+!&+!"#)
-.$%((&!)

,

!! = # +max	(*!"#$%, *!&#'()

Staircase model

Our new model is based on a “staircase” principle

N !"#$
1 !"#$(1)
2 %&'((2)
3 !"#$(3)
4 !"#$(4)
5 !"#$(5)

)*+,-. =)0+,-.+ 01(34536)
89:;(0)

,

)0+,-. =)<+,-.+ *1(3653=)
89:;(*)

,

)<+,-. =)>+,-.+ ?1(3=53@)
89:;(?)

,

)>+,-. = A13@
89:;(A)

,

!!"#$% = &'(!
)*"#(&)

,

!!"#$% = !!&'"#$%+ (&!)(+!&+!"#)
-.$%((&!)

,

!! = # +max	(*!"#$%, *!&#'()

Staircase model

Our new model is based on a “staircase” principle

N !"#$
1 %&'((1)
2 !"#$(2)
3 !"#$(3)
4 !"#$(4)
5 !"#$(5)

)*+,-. =)0+,-.+ (23425)
789:(;)

,

)0+,-. =)<+,-.+ <=(2542>)
789:(<)

,

)<+,-. =);+,-.+ 0=(2>42?)
789:(0)

,

);+,-. =)@+,-.+ *=(2?42A)
789:(*)

,

)@+,-. = B=2A
789:(B)

,

!!"#$% = &'(!
)*"#(&)

,

!!"#$% = !!&'"#$%+ (&!)(+!&+!"#)
-.$%((&!)

,

!! = # +max	(*!"#$%, *!&#'()

Staircase model

Our new model is based on a “staircase” principle

Mixed intra-node bandwidth estimate:

!"!"#$%($, &$) = &!
' 	!"!"

())($) + *+&!' 	!"!"(, ($), &$ = -!"#
-!"#.-!

"$$

!"#$#%& = !""(#)%*($+, + !""(#,)*($+,
General case estimate:

The Staircase model works in more general cases when messages are
mixed intra-socket, inter-socket, and inter-node

Example of detailed modeling of communication overhead

Concluding remarks

New research needed for mesh re-
ordering & partitioning

Further developments of automated code
generation for accelerated computing

Important international collaborations
• JHPCN project with U. Tokyo
• SparCity project (EuroHPC)

