Towards High-Performance Unstructured-Mesh Computations

Xing Cai

simula

Simula Research Laboratory & University of Oslo, Norway

November 29, 2023

Background

Modern processors are fast with number crunching, but the memory speeds lag behind: The "memory wall" problem

Most scientific computing applications are memory-traffic bound

Unstructured meshes are needed for modeling realistic problems, but irregular memory accesses are inevitable

How to alleviate the challenges of achieving performance for unstructuredmesh computations?

This talk presents some recent research activities at Simula

- **Re-ordering of mesh entities**
- Automated code generation for GPU computing
- Re-purposing an ML-specific processor for unstructured mesh computation Physics-guided mesh partitioning
- Detailed modeling of heterogeneous point-to-point MPI communication

Joint work with J. Trotter, A. Thune, L. Burchard, K. Hustad, J. Langguth, S. Funke, A. Rustad, S.-A. Reinemo, T. Skeie

Re-ordering of mesh entities may improve memory performance

Numerical discretization (FEM, FVM) over unstructured meshes will inevitably lead to irregular memory accesses

Proper re-ordering of the mesh entities may improve data reuse in the caches, thus reducing memory traffic

Re-ordering example 1: sparse matrix-vector multiplication

Matrix A is sparse, stored in the CSR format (irows, jcols, A_values)

Several re-ordering strategies may improve memory performance of SpMV

- Reverse Cuthill-McKee re-ordering
- Graph partitioning-based re-ordering
- Nested dissection
- Others

Parallel and Distributed Computing 144 (2020) 189-205

Cache simulation for irregular memory traffic on multi-core CPUs: Case study on performance models for sparse matrix-vector multiplication

James D. Trotter ^{a,b,*}, Johannes Langguth ^a, Xing Cai ^{a,b}

Re-ordering example 1: sparse matrix-vector multiplication

Before re-ordering

After re-ordering

	Before re-ordering	After re-ordering
SandyBridge single core	0.16 GFLOPS	0.59 GFLOPS
SandyBridge single socket	1.03 GFLOPS	3.38 GFLOPS
SandyBridge dual socket	1.98 GFLOPS	6.92 GFLOPS
SkyLake single core	0.23 GFLOPS	0.80 GFLOPS
SkyLake single socket	4.96 GFLOPS	11.65 GFLOPS
SkyLake dual socket	9.31 GFLOPS	23.33 GFLOPS

A new publication at SC23

Bringing Order to Sparsity: A Sparse Matrix Reordering Study on Multicore CPUs

SC '23: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis • November 2023 • Article No.: 31 • Pages 1–13

• https://doi.org/10.1145/3581784.3607046

Re-ordering example 2: finite element assembly procedure

2. Compute element vector and matrix

3. Update global vector and matrix

On Memory Traffic and Optimisations for Low-order Finite Element Assembly Algorithms on Multi-core CPUs

Authors: 🖉 James D. Trotter, 🙎 Xing Cai, 🖉 Simon W. Funke Authors Info & Claims

ACM Transactions on Mathematical Software, Volume 48, Issue 2 • Article No.: 19, pp 1–31 • https://doi.org/10.1145/3503925

- 1. Reverse Cuthill-McKee re-ordering of the mesh nodes
- 2. Re-ordering of the mesh cells in ascending lexicographic order according to their node indices

Re-ordering example 2: finite element assembly procedure

	Est. DRAM	read [B/cell]	Meas. DR	AM read	[B/cell]
Mesh	Best case	Worst case	Original	Rec	ordered
Uniform mesh 1	20.1	528.0	22.0		
Uniform mesh 2	20.1	528.0	21.9		
Cardiac mesh 1	20.5	528.0	170.1		21.6
Cardiac mesh 20	20.3	528.0	250.4		22.4
Cardiac mesh 41	20.4	528.0	229.8		22.3
Cardiac mesh 44	20.4	528.0	217.9		22.0
Aneurysm mesh 3	20.0	528.0	33.7		20.6
Aneurysm mesh 4	19.9	528.0	65.2		21.2

On Memory Traffic and Optimisations for Low-order Finite Element Assembly Algorithms on Multi-core CPUs

Authors: 🕘 James D. Trotter, 🚬 Xing Cai, 🚬 Simon W. Funke Authors Info & Claims

ACM Transactions on Mathematical Software, Volume 48, Issue 2 • Article No.: 19, pp 1–31 • https://doi.org/10.1145/3503925

Automated code generation can simplify GPU programming

GPU programming for numerical computations can be challenging Automated code generation can alleviate the programming challenge Combination of high-level domain-specific language and special compiler The FEniCS framework has used automated code generation to deploy finite element computation to CPU clusters in a user friendly way We recently enabled automated GPU computing for FEniCS

- GPU offloading of the finite element assembly procedure
- Seamless coupling with GPU-capable linear algebra backends

Automated generation of GPU-accelerated assembly code

1. Mathematical equations

3. Form compiler

Automated GPU acceleration of finite element assembly

Performance (in Mdof/s) of matrix assembly for Poisson's equation with linear (P1) elements on dual-socket Intel Xeon Gold 6130 and AMD Epyc "Naples" 7601 CPUs, and an NVIDIA V100 GPU.

P1 elements	Xeon Gold	6130 (CPU)	Epyc "Nap	es" 7601 (CPU)	NVIDIA V100 (GPU)				
Mesh	FEniCS	Optimised	FEniCS	Optimised	P٤	artial offload	Full offload	Lookup table	Rowwise
Uniform mesh 3	7.06	58.83	10.03	76.96	0.	64	188.97	229.57	279.37
Cardiac mesh 1	6.60	64.38	10.46	71.48	0.	39	229.78	220.57	320.67
Cardiac mesh 2	6.41	56.82	10.27	64.11	0.	37	97.73	180.11	309.89
Cardiac mesh 3	6.38	59.05	10.67	69.61	0.	35	85.34	165.31	292.08
Cardiac mesh 4	6.18	58.83	10.36	70.23	0.	38	104.04	178.00	286.03

Best CPU performance

Best GPU performance

Parallel Computing Volume 118, November 2023, 103051

Targeting performance and userfriendliness: GPU-accelerated finite element computation with automated code generation in FEniCS

Automated GPU acceleration of entire FEM computation

		NVIDIA A100 (GPU)		1 Milan CPU	node
Mesh	Iterations	Time [s]	Mdof/s/it	Time [s]	Mdof/s/it
Uniform mesh 1	5	0.05	68.9	0.45	7.6
Uniform mesh 2	5	0.11	75.2	1.23	6.5
Uniform mesh 3	5	0.19	83.4	1.53	10.1
Uniform mesh 4	5	0.32	84.1	2.64	10.0
Uniform mesh 5	5	0.50	84.0	4.18	10.1
Uniform mesh 6	5	0.75	83.4	5.21	12.0
Uniform mesh 7	5	1.07	83.3	7.15	12.4
Uniform mesh 8	5	1.64	74.2	9.56	12.7
Cardiac mesh 1	6	0.26	88.1	2.04	11.1
Cardiac mesh 2	7	0.49	84.5	3.80	10.8
Cardiac mesh 3	7	0.57	82.5	4.10	11.4
Cardiac mesh 4	8	0.87	83.3	6.31	11.5

Parallel Computing Volume 118, November 2023, 103051

Targeting performance and userfriendliness: GPU-accelerated finite element computation with automated code generation in FEniCS

Re-purposing Graphcore intelligence processing units (IPUs)

- Massively parallel architecture 1472 tiny cores per chip Each core has its private SRAM No chip-level shared memory
- Special programming style The computation needs to be formulated as a "dataflow" graph

Nodes: small computational tasks for the cores Edges: flow of data between the nodes Inter-core communication is "implied"

• IPUs: originally designed for ML Simula ported several scientific computing applications to IPUs: *heart simulation, graph analytics,*

sequence alignment, etc.

A simple model of cardiac electrophysiology

• The monodomain model of cardiac electrophysiology

$$\frac{\partial V_m}{\partial t} = \frac{-I_{\rm ion}}{C_m} + \nabla \cdot (\mathsf{D}\nabla V_m)$$

- Operator splitting results in a "PDE" part and an "ODE part
 - PDE part: a 3D diffusion equation
 - ODE part: a system of nonlinear ODEs at every mesh entity
- Also subject of the JHPCN project between Simula & U. Tokyo

Porting a simple cardiac simulator to Graph IPUs

In comparison with using Nvidia's A100 GPUs

• The PDE part of the cardiac simulator runs faster on IPUs

• The ODE part is slower on IPUs

Performance comparison between GC200 IPUs and A100 GPUs, related to a monodomain simulation using the heart04 mesh with 25,000 ODE steps and 100,000 PDE steps.

IPUs	t ODE part
1 2 4 8 16	10.05 s 5.51 s 2.86 s t. Phys., 30 March 2023 Statistical and Computational Physics ne 11 - 2023 ://doi.org/10.3389/fphy.2023.979699
8 16	t. Phys., 30 March 2023 Statistical and Computational Physic ne 11 - 2023 //doi.org/10.3389/fphy.2023.979699

Enabling unstructured-mesh computation on massively tiled Al processors: An example of accelerating *in silico* cardiac simulation

Research

🕼 Luk Burchard¹* 🎡 Kristian Gregorius Hustad¹ 🕘 Johannes Langguth^{1,2}

Physics-guided mesh partitioning

Mesh partitioning is the first step of parallel computing

- Partitioning an unstructured computational mesh is non-trivial
- Mesh partitioning affects the parallelization overhead, may also impact the numerical performance
- When mesh entities have heterogeneous connectivity strength, the partitioning problem needs special care

Example: Parallel solution of the "black-oil" reservoir model

- Large-scale reservoir simulations require parallelization
- Parallel preconditioners are essential for the iterative linear solvers, but their effectiveness is sensitive to mesh partitioning
- Mesh partitioning must therefore balance between parallel efficiency and numerical efficiency

Transmissibility as a measure of numerical connectivity

- Cell-centered finite volume discretization
- Transmissibility across the boundary of two computational cells is a good measure of numerical connectivity

$$T_{ij} = m_{ij} |\Gamma_{ij}| \left(\frac{\|\vec{c}_i\|^2}{\vec{n}_i K_i \vec{c}_i} + \frac{\|\vec{c}_j\|^2}{\vec{n}_j K_j \vec{c}_j} \right)^{-1}$$

 Tightly connected cells should ideally not be divided between two subdomains

Three graph partitioners used for mesh partitioning

- The computational mesh is first translated to a graph, each cell becomes a vertex
- If two cells share a face, the two corresponding vertices are connected by an edge in the graph
- 1. Each edge has uniform weight
- 2. Each edge is weighted by the transmissibility itself
- 3. Each edge is weighted by the logarithmic of transmissibility

Comparing the edge-weight schemes using 64 MPI processes

Comparing the edge-weight schemes using 64 MPI processes

Comparing the edge-weight schemes using 64 MPI processes

Andreas Thune^{1,2*}, Xing Cai^{1,2} and Alf Birger Rustad³

RESEARCH

simulations

Detailed modeling of communication overhead

- The inter-connect on a parallel system is often heterogeneous
- The actual process-to-process communication is also heterogeneous
- Detailed understanding of the communication overhead is important
- State-of-the-art models have weaknesses
- We have developed new models

							S	Sen	d p	roc	ess	5					
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	0	0	0	439	410	0	516	0	468	0	0	0	0	832	0	0
	~	0	0	0	0	819	0	787	0	0	0	0	815	0	0	0	0
	2	0	0	0	883	0	634	333	0	0	0	0	0	0	0	0	492
	с	439	0	883	0	384	0	0	0	0	0	0	0	0	0	0	0
	4	410	819	0	384	0	102	928	0	267	850	0	0	0	939	0	0
ŝ	5	0	0	634	0	102	0	547	0	0	202	0	0	0	0	0	0
Ü	9	516	787	333	0	928	547	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0	844	986	0	878	0	0	0	0
Ð	ø	468	0	0	0	267	0	0	844	0	0	0	0	294	0	0	0
SCG	6	0	0	0	0	850	202	0	986	0	0	496	765	0	0	0	705
ř	10	0	0	0	0	0	0	0	0	0	496	0	677	0	0	643	0
	1	0	815	0	0	0	0	0	878	0	765	677	0	278	825	0	685
	12	0	0	0	0	0	0	0	0	294	0	0	278	0	0	0	0
	13	832	0	0	0	939	0	0	0	0	0	0	825	0	0	122	0
	14	0	0	0	0	0	0	0	0	0	0	643	0	0	122	0	513
	15	0	0	492	0	0	0	0	0	0	705	0	685	0	0	513	0

The state-of-the-art models have several weaknesses

Postal model:

$$T(s) = \tau + \frac{s}{BW}$$

The max-rate model [Gropp et al. 2016]:

$$T(s,N) = \tau + \frac{N \cdot s}{\min(N \cdot BW_{SP}, BW_{max})}$$

Ν	BW_{MP}
1	$BW_{MP}(1)$
2	$BW_{MP}(2)$
3	$BW_{MP}(3)$
4	$BW_{MP}(4)$
5	$BW_{MP}(5)$

Staircase model

$$t_0^{recv} = \frac{N \cdot s_0}{BW_{MP}(N)},$$

$$t_i^{recv} = t_{i-1}^{recv} + \frac{(N-i) \cdot (s_i - s_{i-1})}{BW_{MP}(N-i)},$$

$$T_i = \tau + \max(t_i^{recv}, t_i^{send})$$

Staircase model	
$t_0^{recv} = \frac{N \cdot s_0}{BW_{MP}(N)},$	
$t_i^{recv} = t_{i-1}^{recv} + \frac{(N-i)\cdot(s_i-s_{i-1})}{BW_{MP}(N-i)},$	
$T_i = \tau + \max(t_i^{recv}, t_i^{send})$	

Ν	BW _{MP}
1	$BW_{MP}(1)$
2	$BW_{MP}(2)$
3	<i>BW_{MP}</i> (3)
4	$BW_{MP}(4)$
5	$BW_{MP}(5)$

Staircase model
$t_0^{recv} = \frac{N \cdot s_0}{BW_{MP}(N)},$
$t_i^{recv} = t_{i-1}^{recv} + \frac{(N-i) \cdot (s_i - s_{i-1})}{BW_{MP}(N-i)},$
$T_i = \tau + \max(t_i^{recv}, t_i^{send})$

Ν	BW _{MP}
1	$BW_{MP}(1)$
2	$BW_{MP}(2)$
3	<i>BW_{MP}</i> (3)
4	$BW_{MP}(4)$
5	$BW_{MP}(5)$

Staircase model	
$t_0^{recv} = \frac{N \cdot s_0}{BW_{MP}(N)},$	
$t_i^{recv} = t_{i-1}^{recv} + \frac{(N-i) \cdot (s_i - s_{i-1})}{BW_{MP}(N-i)},$	
$T_i = \tau + \max(t_i^{recv}, t_i^{send})$	

Ν	BW_{MP}
1	$BW_{MP}(1)$
2	$BW_{MP}(2)$
3	<i>BW_{MP}</i> (3)
4	$BW_{MP}(4)$
5	BW _{MP} (5)

$$t_0^{recv} = \frac{5 \cdot s_0}{BW_{MP}(5)},$$

taircase model	
$t_0^{recv} = \frac{N \cdot s_0}{BW_{MP}(N)},$	
$t_i^{recv} = t_{i-1}^{recv} + \frac{(N-i) \cdot (s_i - s_{i-1})}{BW_{MP}(N-i)},$	
$T_i = \tau + \max(t_i^{recv}, t_i^{send})$	

Ν	BW_{MP}
1	$BW_{MP}(1)$
2	$BW_{MP}(2)$
3	$BW_{MP}(3)$
4	BW_{MP}(4)
5	$BW_{MP}(5)$

$$t_0^{recv} = \frac{5 \cdot s_0}{BW_{MP}(5)},$$

$$t_1^{recv} = t_0^{recv} + \frac{4 \cdot (s_1 - s_0)}{BW_{MP}(4)},$$

Staircase model

Ν	BW_{MP}
1	$BW_{MP}(1)$
2	$BW_{MP}(2)$
3	BW_{MP}(3)
4	$BW_{MP}(4)$
5	$BW_{MP}(5)$

Staircase model

$$t_0^{recv} = \frac{N \cdot s_0}{BW_{MP}(N)},$$

$$t_i^{recv} = t_{i-1}^{recv} + \frac{(N-i) \cdot (s_i - s_{i-1})}{BW_{MP}(N-i)},$$

$$T_i = \tau + \max(t_i^{recv}, t_i^{send})$$

$$t_{0}^{recv} = \frac{5 \cdot s_{0}}{BW_{MP}(5)},$$

$$t_{1}^{recv} = t_{0}^{recv} + \frac{4 \cdot (s_{1} - s_{0})}{BW_{MP}(4)},$$

$$t_{2}^{recv} = t_{1}^{recv} + \frac{3 \cdot (s_{2} - s_{1})}{BW_{MP}(3)},$$

	Ν
	1
	2
	3
	4
	5

Staircase model

$$t_0^{recv} = \frac{N \cdot s_0}{BW_{MP}(N)},$$

$$t_i^{recv} = t_{i-1}^{recv} + \frac{(N-i) \cdot (s_i - s_{i-1})}{BW_{MP}(N-i)},$$

$$T_i = \tau + \max(t_i^{recv}, t_i^{send})$$

ς

$$\begin{split} t_0^{recv} &= \frac{5 \cdot s_0}{BW_{MP}(5)}, \\ t_1^{recv} &= t_0^{recv} + \frac{4 \cdot (s_1 - s_0)}{BW_{MP}(4)}, \\ t_2^{recv} &= t_1^{recv} + \frac{3 \cdot (s_2 - s_1)}{BW_{MP}(3)}, \\ t_3^{recv} &= t_2^{recv} + \frac{2 \cdot (s_3 - s_2)}{BW_{MP}(2)}, \end{split}$$

 BW_{MP}

 $BW_{MP}(1)$

BW_{MP}(2)

 $BW_{MP}(3)$

 $BW_{MP}(4)$

 $BW_{MP}(5)$

Ν	BW_{MP}
1	BW _{MP} (1)
2	$BW_{MP}(2)$
3	<i>BW_{MP}</i> (3)
4	$BW_{MP}(4)$
5	$BW_{MP}(5)$

Staircase model

$$t_0^{recv} = \frac{N \cdot s_0}{BW_{MP}(N)},$$

$$t_i^{recv} = t_{i-1}^{recv} + \frac{(N-i) \cdot (s_i - s_{i-1})}{BW_{MP}(N-i)},$$

$$T_i = \tau + \max(t_i^{recv}, t_i^{send})$$

$$t_{0}^{recv} = \frac{5 \cdot s_{0}}{BW_{MP}(5)},$$

$$t_{1}^{recv} = t_{0}^{recv} + \frac{4 \cdot (s_{1} - s_{0})}{BW_{MP}(4)},$$

$$t_{2}^{recv} = t_{1}^{recv} + \frac{3 \cdot (s_{2} - s_{1})}{BW_{MP}(3)},$$

$$t_{3}^{recv} = t_{2}^{recv} + \frac{2 \cdot (s_{3} - s_{2})}{BW_{MP}(2)},$$

$$t_{4}^{recv} = t_{3}^{recv} + \frac{(s_{4} - s_{3})}{BW_{MP}(1)},$$

The Staircase model works in more general cases when messages are mixed intra-socket, inter-socket, and inter-node

Mixed intra-node bandwidth estimate:

$$BW_{MP}^{mix}(N,\theta_i) = \frac{\theta_i}{N} BW_{MP}^{off}(N) + \frac{1-\theta_i}{N} BW_{MP}^{on}(N)$$

General case estimate:

 $T_i^{total} = T_i^{intra-node} + T_i^{inter-node}$

Journals & Magazines > IEEE Transactions on Parallel... > Volume: 34 Issue: 5 😮

Detailed Modeling of Heterogeneous and Contention-Constrained Point-to-Point MPI Communication

Publisher: IEEE Cite This DF

Example of detailed modeling of communication overhead

Concluding remarks

New research needed for mesh reordering & partitioning

Further developments of automated code generation for accelerated computing

Important international collaborations

- JHPCN project with U. Tokyo
- SparCity project (EuroHPC)

Modelling Data Locality of Sparse Matrix-Vector Multiplication on the A64FX

Authors: Sergej Breiter, Sjames D. Trotter, Karl Fürlinger Authors Info & Claims

SC-W '23: Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis • November 2023 • Pages 1334–1342 • https://doi.org/10.1145/3624062.3624198

