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Objective
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The effectiveness of the low/adaptive precisions are discussed in the field of deep learning, mainly.

Considering the effectiveness of low/adaptive precision on ICCG method.

If targeted data can be expressed in lower precision

Use of lower precision reduces execution time

Because of improving an effectiveness of a SIMDization or reducing amount of memory transfer.

Background

As same as practical simulations,

◼ The use of lower precision reduces the execution time.

◼ FP21 (adaptive precision) is evaluated on the seismic simulation on a GPU*1.

In this study, we evaluate the effectiveness of low/adaptive precision with iterative method on CPUs.

◼ ICCG is one of the most famous iterative method which require high accuracy of computations.

◼ The performance of the ICCG method is determined by memory bandwidth.

*1 T. Ichimura et al., "A Fast Scalable Implicit Solver for Nonlinear Time-Evolution Earthquake City Problem on Low-Ordered Unstructured Finite Elements with 

Artificial Intelligence and Transprecision Computing," SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, 2018, 

pp. 627-637



Data formats
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Considering following data formats

Use FP21 and FP42 reduces data transfer between memory and CPU to 2/3 compared with FP32 

and FP64.

For computing FP21 and FP42, it require data casting because of unsupported by FPUs.

FP64

FP32

FP21

FP16

sign 1bit
exp 11bits frac 52bits

frac 23bitsexp 8bits

exp 8bits frac 12bits

exp 5bits frac 10bits

FP42

exp 11bits frac 30bits

Adaptive precision

(Not standardized by IEEE754)



Expressive ability of each data format
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Wider data format have a higher expressive ability
It has strong impact on exponent part, especially.

Formats
Significand :

Number of decimal digits

Exponent : 

Maximum exponent in decimal

FP64 15.95 308

FP42 9.33 308

FP32 7.22 38

FP21 3.91 38

FP16 3.31 5

Expressive ability translated to a decimal number

10𝑦 = 2𝑥+1

𝑦 = 𝑥 + 1 log10 2

Expressive ability of the significand is computed as following

x+1 is produced by hidden bit

Then, y denotes number of decimal digits, and x denotes number of bits of exponent part



Type casting between FP21 and FP32
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#define fp21x3 integer(4)

function fp32x3_to_fp21x3_f(a1, a2, a3) result(b)
implicit none
real(4), intent(in) :: a1, a2, a3
fp21x3 :: b
fp21x3 c
call cast_fp32_to_fp21x3(a1, c)
b(1) = shiftr(iand(c, int(Z'fffff800', 4)), 11)
call cast_fp32_to_fp21x3(a2, c)
c = iand(c, int(Z'fffff800', 4))
b(1) = ior(b(1), shiftl(c, 10))
b(2) = shiftr(c, 22)
call cast_fp32_to_fp21x3(a3, c)
b(2) = ior(b(2), iand(c, int(Z'fffff800', 4)))

end function fp32x3_to_fp21x3_f

subroutine cast_fp32_to_fp21x3(a, b)
implicit none
fp21x3, intent(in)  :: a
fp21x3, intent(out) :: b
b = a

end subroutine cast_fp32_to_fp21x3

FP32→FP21 Left shows a Fortran pseudo code for type 

casting from FP21 to FP32

Three FP21 data are stored by two 32bits integer 

data format.

◼ We implement type casting without changing 

internal bit information (reinterpret cast) by calling 

subroutine with different argument data type.

◼ To SIMDize type casting calls, we add a link time 

optimization options to compiler for facilitating 

inline expansions.

◼ Storing three FP21 data to two 32bits integer is 

new optimization.

⚫ In the previous study of FP21, authors are 

store three FP21 data to 64bits integer.

⚫ Number of computations per one SIMD 

instruction is capped by the widest data 

format.

One 64bits integer : 8 data

Two 32bits integer : 16 data
per one 512bits SIMD



Storage Format
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Evaluating storage format

*Kreutzer, M., et al “A unified sparse matrix data format for efficient general sparse matrix-vector multiplication on modern processors with wide 

SIMD units”, SIAM Journal on Scientific Computing,

CRS

⚫ Basic storage format for sparse 

matrix

ELL

⚫ Considering a vector and SIMD 

operation

⚫ Equalize number of non-zero 

elements in each row

⚫ 0-padding to columns lacking non-

zero elements

Sell-C-s
⚫ Proposed considering the SIMD 

operation

⚫ Shape determined from parameter 

Chunk size C and scope s
⚫ Less 0-Paddings than ELL

⚫ Improved cache hit ratio



Numerical environments
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Env 1 ： Oakforest-PACS (OFP)

◼ Xeon Phi

⚫ 64 cores,128threads, MCDRAM

◼ Intel compiler (v19.1.1.304)

⚫ Options : -O3 -xMIC-AVX512 -qopenmp -align array64byte -ipo

⚫ Numerical environments: KMP_HW_SUBSET=64c@2,2t

Env 2 ： Oakbridge-CX (OBCX)

◼ Xeon Gold Platinum 8280 × 2

⚫ 56cores, 56threads, DDR4

◼ Intel compiler (v19.1.1.304)

⚫ Options ： -O3 -xHost -qopenmp -align array64byte -ipo

Env3 ： Wisteria/BDEC-01 Odyssey (WO)

◼ A64FX

⚫ 48cores, 48 threads, HBM2

◼ Fujitsu compiler (4.5.0 tcscd-1.2.31)

⚫ Options : -O3 -Kfast,openmp,zfill,A64FX,ARMV8_A

⚫ Numerical environments : FLIB_FASTOMP=TRUE, FLIB_HPCFUNC=TRUE,

                 XOS_MMM_L_PAGING_POLICY=demand:demand:demand



Conditions of application (P3D)
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P3D application

◼ DoF : 2563 = 16,777,216

◼ Thermal diffusivity : 𝜆1 = 1, 1 ≤ 𝜆2 ≤ 1010

ICCG solver

◼ Parallelized IC preconditioner with multi-coloring approach

⚫ Cyclic Multi-coloring + Reverse Cuthill-Mckee （CM-RCM）
⚫ Number of colors for CM-RCM : 10 colors

⚫ Convergence condition is 
𝑟𝑘

2

𝑟0 2
≤ 10−8

⚫ Storage formats of the matrices are CRS, ELL and Sell-C-s

◼ Combination of the data formats of the matrix and vector

✓ FP64-FP64

✓ FP42-FP64

✓ FP32-FP64

✓ FP64-FP32

✓ FP32-FP32

✓ FP21-FP32

✓ FP16-FP32

Denoted as data format of “matrix”-”vector”

In descending order of the amount of memory transfer

＊FP16 vector is not included because it dose not converged.

Blue： Only evaluate on OFP，OBCX

Green：Only evaluate on WO



Comparison among the storage formats
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Sell-C-s （FP64-FP64）shows performance close peak of memory bandwidth

◼ Computational time of Sell-C-s （FP64-FP64） on WO is 3.3 and 1.9 times faster than 

OBCX and OFP, respectively.

⚫ Sell-C-s （FP64-FP64） on WO shows 812GB/s (measured by Fujitsu profiler).

⚫ Stream triad : OBCX=280GB/s、OFP=490GB/ｓ、ＷＯ=840GB/s

(WO/OBCX=3.0, WO/OFP=1.7)

Computational time of the preconditioner Whole computational time of ICCG

SCS = Sell-C-s

3.3times

1.9times



Overhead of type casting of adaptive precisions
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The overhead of typecasting is enough small. （Up to 1.5%)

For measuring the overhead of typecasting, we prepared a dummy code that changed the FP21 or FP42 

loading function to normal loading with the same amount of reference data.
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The difference between data format on convergence ratio

12

0

500

1000

1500

2000

2500

3000

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10
N

u
m

b
e

r 
o

f 
it

er
at

io
n

s

l2

SCS FP64-FP64 SCS FP32-FP64
SCS FP32-FP32 SCS FP16-FP64
SCS FP16-FP32

Unconverged

OFP

OBCX

WO

Different combination of data formats shows different convergence ratio.

◼ There is no impact of lower data-precision with 

good conditions.

◼ FP32-FP16 is not converged with condition
𝜆2

𝜆1
> 105 → Beyond expression ability of FP16

◼ Convergence ratio get worse on ill-condition by 

changing vectors FP64→FP32



0

20

40

60

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
[s

]

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

0

10

20

30

40

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
[s

]

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

Performance improvement by low/adaptive precisions

13

0

5

10

15

20

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
[s

]

l2

SCS FP64-FP64 SCS FP32-FP64
SCS FP32-FP32 SCS FP16-FP64
SCS FP16-FP32

OFP

OBCX WO

Low/Adaptive precision shows reduce computational time.

◼ FP16-FP32 was the fastest within the good condition.

⚫ 17.3% compared with FP64-FP64

◼ FP21-FP32 was the fastest within the good condition. 

on OFP and OBCX.

⚫ 18.4%(OFP), 18.6%(OBCX)

◼ FP32-FP64 was the fastest in intermediate conditions.

◼ FP21-FP32 was faster in worse condition, again.

⚫ 12.6％(OFP), 13.7%(OBCX)
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Applying low/adaptive precisions to whole ICCG 1/2
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Relative error with FP21 and FP32 are large

• The relative error of FP21-FP32 is more than 10-1 with l2>2.66

• The relative error of FP32-FP32 has reached to 10-1 with l2>200

• No deterioration of FP42-FP64 accuracy was observed.

Number of iterations



Result of applying low or adaptive precision to all arrays
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Applying low or adaptive precision to all matrices and vectors

FP42-FP64 is 10.5% faster than FP64-FP64 (𝜆2 = 1.0).

FP32-FP32 is 35.3% faster than FP64-FP64 (𝜆2 = 1.0).

FP21-FP32 is 39.5% faster than FP64-FP64 (𝜆2 = 1.0).
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Environment : OBCX

DoF : 2563 = 16,777,216

Storage Format : Sell-C-s

Coloring : CM-RCM(10)



Conclusion
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◼ Evaluate the usefulness of low precision such as FP32 and FP16 and adaptive precision such 

as FP42 and FP21 in real applications where the use of FP64 is typical.

⚫ We choose the P3D for the evaluations as the real application.

⚫ ICCG solver is included in the P3D and it is a typical application using FP64.

◼ We optimize the load and store routine of FP21 on CPUs for general purpose.

⚫ We change a storing data type of FP21 from one 64bits integer to two 32bits integers.

◼ In the numerical evaluations, we apply low/adaptive precisions to the IC preconditioner part or 

whole ICCG method.

◼ The use of low/adaptive precision improves performance of ICCG method.

⚫ The effectiveness of Low/adaptive precision is high.

⚫ When we apply low/adaptive precision to the whole ICCG method, we have to consider the 

error of the result.

➢ If the accuracy of the result is acceptable, low/adaptive precision shows good 

performance improvement.

⚫ The fastest combination of the matrix and vector is changed depending on the condition of 

the coefficient matrix.

Future work

◼ Considering an auto-tuning approach to dynamically select the best data format.

◼ Evaluation of more mixed precision : FP21-FP32 IC, FP42-FP64 CG part

◼ Adding verification
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