Low/Adaptive Precision Computation In
ICCG solver for ill-conditioned problem

Masatoshi Kawal

Nagoya University, ITC

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

h3 ﬂpen BDEC
/// aaaaaaaaaaaaaaaaaaaaaaaa

International Workshop on “Integration of Simulation/Data/Learning and Beyond”
45thASE Seminar (Advanced Supercomputing Environment)
Nov 29, 2023, Kashiwa, Japan & Online

Outline

1. Objective

2. Low/Adaptive precisions
3. Storage format

4. Numerical evaluations
5. Conclusion

Objective

Considering the effectiveness of low/adaptive precision on ICCG method.

/ Background \

The effectiveness of the low/adaptive precisions are discussed in the field of deep learning, mainly.

If targeted data can be expressed in lower precision

\

Use of lower precision reduces execution time
Because of improving an effectiveness of a SIMDization or reducing amount of memory transfer.

As same as practical simulations,
B The use of lower precision reduces the execution time.

\ B FP21 (adaptive precision) is evaluated on the seismic simulation on a GPU™, /

In this study, we evaluate the effectiveness of low/adaptive precision with iterative method on CPUs.
B ICCG is one of the most famous iterative method which require high accuracy of computations.
B The performance of the ICCG method is determined by memory bandwidth.

*1 T. Ichimura et al., "A Fast Scalable Implicit Solver for Nonlinear Time-Evolution Earthquake City Problem on Low-Ordered Unstructured Finite Elements with
Artificial Intelligence and Transprecision Computing,” SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, 2018,

pp. 627-637

Data formats

Considering following data formats
ign 1bit

exp 11bits frac 52bits
FP64 I
exp 11bits frac 30bits
FPa I
exp 8bits frac 23bits

FP32 I

exp 8bits frac L2bits Adaptive precision
FP21 IIIIIIIIIIII (Not standardized by IEEE754)

exp 5Sbits frac 10bits

Fe16 | LRR A NREEN

Use FP21 and FP42 reduces data transfer between memory and CPU to 2/3 compared with FP32
and FP64.
For computing FP21 and FP42, it require data casting because of unsupported by FPUSs.

Expressive ability of each data format

Wider data format have a higher expressive ability
It has strong impact on exponent part, especially.

Expressive ability translated to a decimal number

Formats Significqnd L | Exponent :- |
Number of decimal digits Maximum exponent in decimal
FP64 15.95 308
FP42 9.33 308
FP32 7.22 38
FP21 3.91 38
FP16 3.31 5

Expressive ability of the significand is computed as following
10Y = 2x+1 x+1 is produced by hidden bit
y=(x+1)log2

Then, y denotes number of decimal digits, and x denotes number of bits of exponent part

Type casting between FP21 and FP32

Left shows a Fortran pseudo code for type

FP32—FP21

#define fp21x3 integer(4) casting from FP21 to FP32
SR e R R I R IC I YA D LTI | hree FP21 data are stored by two 32bits integer
implicit none data format.

;egi(g)f.igte”t(i”) :: al, a2, a3 B \We implement type casting without changing

f221§3 c internal bit information (reinterpret cast) by calling

call cast_fp32_to_fp21x3(al, c) subroutine with different argument data type.

JEDRERVISA G LI LdeARann LR ODIREONN B To SIMDize type casting calls, we add a link time

call cast_fp32_to_fp2ix3(a2, c) optimization options to compiler for facilitating

= iand(c, int(Z'fffff8e0', 4)) inli .

b(1) = ior(b(1), shiftl(c, 10)) INIINE EXPansIons. o |

b(2) = shiftr(c, 22) Storing three FP21 data to two 32bits integer is

call cast_fp32_to fp21x3(a3, c) new optimization.

b(2) = ior(b(2), iand(c, int(Z'fffffgee’, 4))) ® [n the previous study of FP21, authors are
end function fp32x3_to_fp2lx3_f store three FP21 data to 64bits integer.
subroutine cast_fp32_to_fp21x3(a, b) ® Number of computations per one SIMD

implicit none Instruction is capped by the widest data

fp21x3, intent(in) :: a format

fp21x3, intent(out) :: b . _

b - 2 One 64b_|ts _mteger . 8 data oer one 512bits SIMD
end subroutine cast_fp32_to_fp21x3 Two 32bits integer : 16 data 6

Storage Format

Evaluating storage format

Width of chunk I,

[

A

Sorted scope o

<
<

[
»

CRS ELL

SIMD units”, SIAM Journal on Scientific Computing,

Sorted scope o

v

A

[

A

|

[
»

<

D 9zIs yunyd

»

y

<

D 9zIs junyd

Sell-C-o * (Sell-4-2)

*Kreutzer, M., et al “A unified sparse matrix data format for efficient general sparse matrix-vector multiplication on modern processors with wide

CRS
® Basic storage format for sparse
matrix

ELL

® Considering a vector and SIMD
operation

® Equalize number of non-zero
elements in each row

® O-padding to columns lacking non-
zero elements

Sell-C-o

® Proposed considering the SIMD
operation

® Shape determined from parameter
Chunk size C and scope o

® |Less 0-Paddings than ELL

® Improved cache hit ratio

Numerical environments

Env 1 : Oakforest-PACS (OFP)

B Xeon Phi
® 64 cores,128threads, MCDRAM

B Intel compiler (v19.1.1.304)
® Options : -O3 -xMIC-AVX512 -gopenmp -align array64byte -ipo
® Numerical environments: KMP_HW_ SUBSET=64c@?2,2t

Env 2 : Oakbridge-CX (OBCX)
B Xeon Gold Platinum 8280 X 2
® 56cores, 56threads, DDR4
B Intel compiler (v19.1.1.304)
® Options : -O3 -xHost -gopenmp -align array64byte -ipo

Env3 : Wisteria/BDEC-01 Odyssey (WO)
B A64FX
® 48cores, 48 threads, HBM?2
B Fujitsu compiler (4.5.0 tcscd-1.2.31)
® Options : -O3 -Kfast,openmp,zfill, A64F X, ARMV8_A
® Numerical environments : FLIB. FASTOMP=TRUE, FLIB. HPCFUNC=TRUE,
XOS MMM_L_PAGING_ POLICY=demand:demand:.demand

Conditions of application (P3D)

P3D application

B DoF : 2563 =16,777,216
B Thermal diffusivity : 11 =1, 1 < 12 < 1019

ICCG solver
B Parallelized IC preconditioner with multi-coloring approach

® Cyclic Multi-coloring + Reverse Cuthill-Mckee (CM-RCM)
® Number of colors for CM-RCM : 10 colors A
k
® Convergence condition is ”:0”2 <107%® A2
2
® Storage formats of the matrices are CRS, ELL and Sell-C-o %

B Combination of the data formats of the matrix and vector

v’ FP64-FP64 | descending order of the amount of memory transfer

v’ FP42-FP64

v FP32-FP64

v EP64-FP32 Blue: Only evaluate on OFP, OBCX

v EP32-EP32 Green:Only evaluate on WO

v FP21-FP32

v EP16-FP32 V * FP16 vector is not included because it dose not converged.

Denoted as data format of “matrix”-"vector”

Comparison among the storage formats

S S T
o N b

Computational time [s]

o N B O

Sell-C-o (FP64-FP64)shows performance close peak of memory bandwidth

B Computational time of Sell-C-o (FP64-FP64) on WO is 3.3 and 1.9 times faster than
OBCX and OFP, respectively.
® Sell-C-0 (FP64-FP64) on WO shows 812GB/s (measured by Fujitsu profiler).
® Stream triad : OBCX=280GB/s. OFP=490GB/s, WO=840GB/s
(WO/OBCX=3.0, WO/OFP=1.7)

Computational time of the preconditioner Whole computational time of ICCG

w
o

9]
u

3.3times

N
o

W FP64-FP64 m FP32-FP64 m FP32-FP32 m FP16-FP64 m FP16-FP32 W FP64-FP64 m FP32-FP64 m FP32-FP32 FP16-FP64 m FP16-FP32
1.9times

\WO OBCX opp} \WO OBCX OFR \WO OBCX OFP) ‘WO OBCX OFP WO OBCX OFP WO OBCX OFP
Y Y Y ' T - r - T |
CRS ELL SCS CRS ELL SCS

SCS = Sell-C-o

=
o

Computational time [s]
=
n

(93]

o

10

Overhead of type casting of adaptive precisions

The overhead of typecasting is enough small. (Up to 1.5%)

For measuring the overhead of typecasting, we prepared a dummy code that changed the FP21 or FP42
loading function to normal loading with the same amount of reference data.

Computational time [s]

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

OFP

Computational time [s]

OBCX
6.0

5.0
4.0

3.0

2.0
1.0
0.0
<<va &‘Q\\
Q&V ™ »
/
4 <<<2(°

11

The difference between data format on convergence ratio

Number of iterations

Number of iterations

2500

2000

1500

1000

500

0

Different combination of data formats shows different convergence ratio.

——FP64-FP64 —e—FP42-FP64
——FP32-FP64 ——FP32-FP32
——FP21-FP32

OFP

B There is no impact of lower data-precision with
good conditions.
B FP32-FP16 is not converged with condition

% > 10> — Beyond expression ability of FP16
1
B Convergence ratio get worse on ill-condition by

changing vectors FP64—FP32

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

2500

2000

1500

1000

500

0

1.00E+00 1.00E+03 1.00E+06

A2

——FP64-FP64 —e—FP42-FP64
——FP32-FP64 ——FP32-FP32

——FP21-FP32

A2

3000

N
Ul
o
o

2000
1500
1000
500
0

Number of iterations

OBCX

1.00E+09

—e—SCS FP64-FP64 —e—SCS FP32-FP64 WO
SCS FP32-FP32 —+-SCS FP16-FP64

——SCS FP16-FP32 (“—/\//
M Ul;]?pverged

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

A2 12

Performance improvement by low/adaptive precisions

Low/Adaptive precision shows reduce computational time.

40 | [-e—FP64-FP64 —e—FP42-FP64
. —o—FP32-FP64 —e-FP32-FP32 B FP16-FP32 was the fastest within the good condition.
g0 [FeoLies2 ’rp,/"p:a ® 17.3% compared with FP64-FP64
E ' B FP21-FP32 was the fastest within the good condition.
3 20 on OFP and OBCX.
210 enat=bEEEC ® 18.4%(OFP), 18.6%(0OBCX)
£ B FP32-FP64 was the fastest in intermediate conditions.
- 0 OFR B FP21-FP32 was faster in worse condition, again.
1.00E+00 1.00E+02 1.00E+04 17;(%OE+O6 1.00E+08 1.00E+10 ® 12.6%(0OFP), 13.7%(OBCX)
_ 60 |-e—FP64-FP64 —=—FP42-FP64 _ 20 [[==SCSFP64-FP64 —o-SCS FP32-FP64
) ~—FP32-FP64 ——FP32-FP32 = SCS FP32-FP32 SCS FP16-FP64
g —e—FP21-FP32 FéJ/Q £15 | ——SCS FP16-FP32 /;;;.'/'/’f:‘
= 40 ' =
g % 10
5 e
‘ézo é— .
S OBCX S
0 0
1.00E+00 1.00E+02 1.00E+04 1}.L(;OE+O6 1.00E+08 1.00E+10 1.00E+00 1.00E+02 1.00E+04 i.goaoe 1.00E+08 1.00E+10

13

Applying low/adaptive precisions to whole ICCG 1/2

Relative error with FP21 and FP32 are large

Number of iterations Relative error of point ® compared with FP64-FP64
2500 1.E+00
1.E-01
2 2000
o 1.E-02
© S
g 1500 = 1.E-03
Y— GJ
o 1000 2 1.E-04 FP32-FP64
v 0
> | -e-FP21-FP32
Z 500 1.E-06
—=-FP64-FP64 ——FP42-FP64 —<FP32-FP64
0 FP32-FP32 -e-FP21-FP32 1.E07
1.E+00 1.E+02 1.E+04 1.E+06
1.E+00 1.E+03 1.E+06 1.E+09 >

A2

* The relative error of FP21-FP32 is more than 10-1 with A2>2.66

« The relative error of FP32-FP32 has reached to 10-! with A2>200
* No deterioration of FP42-FP64 accuracy was observed. ’11
M

Result of applying low or adaptive precision to all arrays

Computational time [s]

Environment : OBCX

Applying low or adaptive precision to all matrices and vectors DoF : 256° = 16,777,216
FP42-FP64 is 10.5% faster than FP64-FP64 (A2 = 1.0). gtglgﬁe i maééfﬂe'{g'ﬁ
FP32-FP32 is 35.3% faster than FP64-FP64 (12 = 1.0). ing : CM-RCM(10)

FP21-FP32 is 39.5% faster than FP64-FP64 (12 = 1.0).

120

=-FP64-FP64 } = FP64-FP64 —FP42-FP64
100 | ~—FP42-FP64 < o |*-FP32-FP32 -+-FP21-FP32
FP32-FP32 o
30 |-e-FP21-FP32 £ 20
2
60 S 15
It
40 2 10
S
20 o S 5
0 0
1.E+00 1.E+03 1.E+06 1.E+09 1.Ee+00 1.E+01 1.E+02 1.E+03 1.E+04

A2 A2
15

Conclusion

B Evaluate the usefulness of low precision such as FP32 and FP16 and adaptive precision such
as FP42 and FP21 in real applications where the use of FP64 is typical.
® \We choose the P3D for the evaluations as the real application.
® |CCG solveris included in the P3D and it is a typical application using FP64.
B \We optimize the load and store routine of FP21 on CPUs for general purpose.
® \Ve change a storing data type of FP21 from one 64bits integer to two 32bits integers.

B In the numerical evaluations, we apply low/adaptive precisions to the IC preconditioner part or
whole ICCG method.
B The use of low/adaptive precision improves performance of ICCG method.
® The effectiveness of Low/adaptive precision is high.
® \When we apply low/adaptive precision to the whole ICCG method, we have to consider the
error of the result.
» If the accuracy of the result is acceptable, low/adaptive precision shows good
performance improvement.
® The fastest combination of the matrix and vector is changed depending on the condition of
the coefficient matrix.
Future work
B Considering an auto-tuning approach to dynamically select the best data format.
B Evaluation of more mixed precision : FP21-FP32 IC, FP42-FP64 CG part
B Adding verification 16

	スライド 1: Low/Adaptive Precision Computation in ICCG solver for ill-conditioned problem
	スライド 2: Outline
	スライド 3: Objective
	スライド 4: Data formats
	スライド 5: Expressive ability of each data format
	スライド 6: Type casting between FP21 and FP32
	スライド 7: Storage Format
	スライド 8: Numerical environments
	スライド 9: Conditions of application (P3D)
	スライド 10: Comparison among the storage formats
	スライド 11: Overhead of type casting of adaptive precisions
	スライド 12: The difference between data format on convergence ratio
	スライド 13: Performance improvement by low/adaptive precisions
	スライド 14: Applying low/adaptive precisions to whole ICCG 1/2
	スライド 15: Result of applying low or adaptive precision to all arrays
	スライド 16: Conclusion

