P
T
Y7 N N

AR VY | B
HAD

NVIDIA PR = i
[e AT L)

f 4

et

N-WAYS GPU BOOTCAMP
OPENACC

OPENACC

What to expect?

« Basic introduction to OpenACC directives
 HPC SDK Usage

» Portability across Multicore and GPU

2 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OpenACC is...

a directives-based Taino, o
parallel programming mOdel {<para||e| code>
designed for }

}

performance and portability.

GAUSSIAN 16

‘ ‘ Using OpenACC allowed 15 to continue
development of our fundamental
algorithms and software capabilities
simultaneously with the GPU-related
work. In the end, we could use the
same code base for SWP, duster/
network and GPU paralle.lsm. PGI's
compilers were essential to the success

of our efforts. , ,

The CAAR project provided us with
carly access to Summit hardware and
arcess 1o PGI compiler experts. Bath
of these were critical to our success.
PGI's DpendCC support remains the
best available and is competitive with
much more ntusive programmins
medel approaches.

VMD

Due to Amdahl's lzw, we need to port
BB more parts of our code to the GPU 1f were
going to speed it up. But the sheer
number of routines pases a challenge.
OpenaCC directives give us a low-cost
approach to getting at least some speed-
up out of these second-tier routes. In
many cases Its compietely sufficlent
because with the cument algorithms, GPU
performance is bandwidth-bound. ——

SANJEEVINI

In an academic environment

S maintenance and spaedup of existing
codes is a tedious task. OpanACC
provides a great piattorm for

sclentists 1o

both fasks wihout involving & lot of
efforts or manpawer In speeding up the
entire computational task.

B We've effectively used

ANSYS FLUENT

OpenACC for heterogeneous

computing in ANSYS Fluent 5

with impressive performance. S
We're now applying this work ol 0
to more of our models and \’ '\ ‘\,‘\
new platforms. = L }\

| Parling our unstiuctured C++
CFD solver FINE/Open to GPUs

using OpenACC would have

been impossible two or three
years ago, but OpenACC has
developed enough that we're

now getting some really good _

results.

Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with
a minimum investment of time
and effort in learning to program
GPUs,

IBM-CFD

ODENAGE cn prove 1o be 3 handy ool far
computaticnal engineers and researchers 1
obtain fast soktion of non inear dyramics
rmnm In I houndary Incormpresstie

omputing lime by persrg severa
erhs of cu legacy cuds 1o GPU

ally the
and martx sohvers haws boon vwel-accekoratod
e e over sl seakeality of M code

~arth akgortthm

l.ﬂ

-

I B0 For VASP, OpenACC is the way
forward for GPU acoeleration.
Performance is similar and in some
cases better than CUDA C, and
OpenACC dramatically decreases
GPU development and maintenance
efforts. We're excited to collaborate

with NVIDIA and PGI as an carly gp—

adopter of CUDA Unified Memory.

SYNOPSYS

Using OpenACC, we've GPU-
™ accelerated the Synopsys TCAD
Sentaurus Device EMW simulator

to speed up optical simulations of
image sensors. GPUs are key to
improving simulation throughput
in the design of advanced image

sensors.

PWscf (Quantum
ESPRESSO)

CUDA Fortran gives us the full

performance patential of the CUDA
programming model and NVIDIA GPUS,
Whit: leveraging the potential of expil
data movement, ISCUF KERNELS.
dieclives give 1 productivity and
source code mamnianabity I's the best
of both wodds

oo,

i.‘

" g
” e % - e
.? N - . .‘XM“}*;:
% ¥
N ?) |

OpenACC made it practical to
develop for GPU-based hardware
while retaining a single source for
almost all the COSMO physics
code.

Our team has been evaluating
OpenACC as a pathway to
performance portability for the Model
for Prediction (MPAS) atmospheric
model. Using this approach on the
MPAS dynamical core, we have
achieved performance on a single
P100 GPU expivalent to 2.7 dual

socketed Intel Xeon nodes on our new

Cheyenne supercomputer.

With OpenACC and a compute
node based on NVIDIA's Tesla
P100 GPU, we achieved more
than a 14X speed up over a K
Computer node running our
earthquake disaster simulation
code

LN

Adding OpenACC into MAS has given us
the ability to migrate medium-sized
simulations from a multi node CPU
chister 1o a single mulli-GPU server.
Thes implementation yiclded a portable
single-source code for both CPU and
GPU runs. Future work will add
OpenACC to the remaining model
features, enabling GPU-accelerated
realistic solar storm modeling. -

OpenACC Directives

Manage #pragma acc data copyin(a,b) copyout(c)
Data /{
Movement

#pragma acc parallel

” {
Initiate ,;f””}'#pragma acc loop gang vector

Earallell for (i = 0; i < n; ++1) {
xecution c[i] = a[i] + b[i];
Optimize } '

Loop

Mappings } 0 p e n

Directives for Accelerators

e Incremental
 Single source

e Interoperable

e Performance portable
« CPU, GPU, Manycore

5

SANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC SYNTAX

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses I$acc directive clauses

<code>

<code>

A pragma in C/C++ gives instructions to the compiler on how to compile the code. Compilers that do not understand a
particular pragma can freely ignore it.

A directive in Fortran is a specially formatted comment that likewise instructions the compiler in it compilation of the
code and can be freely ignored.

“acc”informs the compiler that what will come is an OpenACC directive
Directives are commands in OpenACC for altering our code.

Clauses are specifiers or additions to directives.

6 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel

{

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute
redundantly.

7 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

Q
)
#pragma acc parallel L,
{
S
for(int i = @; 1 < Nj i++) S
{
// Do Something
}
Q
)
O
}

8 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel

{

#pragma acc loop
for(int i = 0; i < N; i++

{
}

The loop directive
) informs the compiler
which loops to
parallelize.

// Do Something

9 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

#pragma acc parallel Use a parallel directive to mark a region of code where you want

{

parallel execution to occur
#pragma acc loop
'For‘(i = 0; j < N; i++) This p.arall.el r_egion is marked by curly braces in C/C++ or a start and
‘ . end directive in Fortran
a[l] = Yy
The loop directive is used to instruct the compiler to parallelize the
iterations of the next loop to run across the parallel gangs

I$acc parallel
I$acc loop

doi=1, N
a(i) =
end do
I$acc end parallel

10 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

This pattern is so common that you can do all of this in a single line of
C/C++ codep g :
#pragma acc parallel loop _ . .
‘For‘(i = 0; j < N; i++) In this example, the parallel loop directive applies to the next loop

ali] = 0; This directive both marks the region for parallel execution and

distributes the iterations of the loop.

When applied to a loop with a data dependency, parallel loop may
produce incorrect results

I$acc parallel loop

do i =1, N
a(i) =
end do

11 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILD AND RUN THE CODE

NVIDIA HPC SDK

« Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC
modeling and simulation application

* The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenACC C and
Fortran

« The command to compile C code is ‘nvc’
« The command to compile C++ code is ‘nvc++’

« The command to compile Fortran code is ‘nvfortran’

nvc —fast —-Minfo=accel —ta=tesla:managed main.c nvfortran —fast —~Minfo=accel —ta=tesla:managed main.f90

or or
nvc -fast -Minfo=accel -acc=gpu -gpu=managed main.c nvfortran -fast -Minfo=accel -acc=gpu -gpu=managed main.fo0

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILDING THE CODE

-Minfo shows more details

$ nvc -fast -ta=multicore -Minfo=accel laplace2d uvm.c
main:
63, Generating Multicore code
64, #pragma acc loop gang
64, Accelerator restriction: size of the GPU copy of Anew,A is unknown
Generating reduction (max:error)
66, Loop is parallelizable

$ nve -fast rdf.c
main:
63, Accelerator kernel generated
Generating Tesla code
64, #pragma acc loop gang /* blockIdx.x */
Generating reduction (max:error)
66, #pragma acc loop vector(128) /* threadIdx.x */
63, Generating implicit copyin (A[:])
Generating implicit copy (error)
66, Loop is parallelizable

1 4 14 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

Pseudo Code

for (int frame=0;frame<nconf;frame++){ e Across Frames
for(int id1=0;id1<numatm;id1++)

{
for(int id2=0;id2<numatm;id2++)

{
dx=d_x[]-d_x[]; e Find Distance
dy=d_y[]-d_y[];
dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);
e Reduction
if (r<cut) {
ig2=(int)(r/del);
d_g2[ig2] = d_g2[ig2] +1 ;
}
}
}

} 15 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF
Pseudo Code -C

for (int frame=0;frame<nconf;frame++) {
 Parallel Loop construct
#pragma acc parallel loop
for(int id1=0;id1<numatm;id1++) {
for(int id2=0;id2<numatm;id2++) {
dx=d_x[]-d_x[];
dy=d_y[]-d_y[];
dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {
ig2=(int)(r/del);
#pragma acc atomic
d_g2[ig2] = d_g2[ig2] +1 ;
} 3 e Atomic Construct
3

} 16 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

Pseudo Code - Fortran

do iconf=1,nframes

if (mod(iconf,1).eq.0) print*iconf

ISacc parallel loop

do i=1,natoms

do j=1,natoms

dx=x(iconf,i)-x(iconf,j)
dy=y(iconf,i)-y(iconf,j)
dz=z(iconf,i)-z(iconf,j)

if(r<cut)then
ISacc atomic
g(ind)=g(ind)+1.0d0
endif
enddo
enddo
enddo

 Parallel Loop construct

o Atomic Construct

17 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC SPEEDUP

HPC SDK 20.11, NVIDIA Tesla V100, DGX1

18 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://www.openacc.org/get-started

https://developer.nvidia.com/hpc-sdk

19 <SINVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

ADDITIONAL EXERCISE
CONTENT

PROCESSING FLOW - STEP 1

GigaThread™

CPU Memory

1. Copy input data from CPU memory to GPU
memory

erconnect

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

N
(ol
Ll
T
wn
=
o
|
L
O
<
5
Vel
Ll
O
o
ad
ol

=
-
e)
©
o
=
(]
o)
(O]

3
<}
=
[}
=
=)
o
@)

Copy input data from CPU memory to GPU

memory
2. Load GPU program and execute,

1.

caching data on chip for performance

nder the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation u

PROCESSING FLOW - STEP 3

GigaThread™

. Copy input data from CPU memory to GPU
memory
Copy results from GPU memory to CPU

memory

DRAM
. Unified Memory changes the nature of flow _

« Some of the basics remains same

. Load GPU program and execute,
caching data on chip for performance

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA UNIFIED MEMORY

Simplified Developer Effort

!

System
Memory

GPU Memory

! !

Managed Memory

26 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MANAGED MEMORY

Limitations

With Managed Memory

The programmer will almost always be able to get better
performance by manually handling data transfers

Memory allocation/deallocation takes longer with managed SSeRaams Smsaamas
ENBEEEREE REEEEEEER
memory HEEEEEEE EEREEEEE

EENPENEE EREEREEER
ERANANAS ARSREEEN
EENPEEEE EEEEEEEE
Cannot transfer data asynchronously BESNNNES REREEEER
EENEEEEN NENEEEEE

Currently only available from NVIDIA Compiler on NVIDIA GPUs. I I

Managed Memory

27 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA MANAGED MEMORY

nvc++ -fast -ta=tesla:managed -Minfo=accel main.c
or

* OpenACC:

nvc++ -fast -acc=gpu -gpu=managed -Minfo=accel main.c

* Enabled using -ta=tesla:managed or -gpu=managed

- std::par nvc++ -stdpar=gpu program.cpp -o program

* All allocations uses managed memory

* OpenMP:

« Current Beta release does not support Unified memory. Need explicitly map target directive to
copy data

28 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC DATA DIRECTIVE

Definition

The data directive defines a lifetime for data on the
device beyond individual loops

During the region data is essentially “owned by” the

accelerator < Sequential and/or Parallel code >

Data clauses express shape and data movement for
the region

< Sequential and/or Parallel code >

29 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

copy(list)

copyin(list)

copyout (list)

create(list)

DATA CLAUSES

Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

For many important data structures in your code, this is a
logical default to input, modify and return the data.

Allocates memory on GPU and copies data from host to GPU when
entering region.

: Think of this like an array that you would use as just an
input to a subroutine.

Allocates memory on GPU and copies data to the host when exiting
region.

A result that isn’t overwriting the input data structure.

Allocates memory on GPU but does not copy.

Temporary arrays. 0 @nvioia

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ARRAY SHAPING

Sometimes the compiler needs help understanding the shape of an array
The first number is the start index of the array
In C/C++, the second number is how much data is to be transferred

In Fortran, the second number is the ending index

copy(array[starting index:length])

copy(array(starting index:ending index))

31 <ANVIDIA
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ARRAY SHAPING (CONT.)

Multi-dimensional Array shaping

copy(array[@:N][0:M])

copy(array(1:N, 1:M))

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0

C/C++

Fortran

IIIIIII

STRUCTURED DATA DIRECTIVE

Example

#pragma acc data copyin(a[@:N]lb[@:N]) copyout(c[O:N])

#pragma acc parallel 1lqop
for(' ; 1 < N;
a[i] + b[f];

33 <ANVIDIA

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

