
N-WAYS GPU BOOTCAMP
CUDA C/FORTRAN

2
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA C/FORTRAN

What to expect?
• Basic introduction to GPU Architecture

• GPU Memory and Programming Model

• CUDA C/Fortran programming

3
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU COMPUTING

Application Code

+

GPU CPUParallelize using CUDA
Programming Model

Only Critical Functions
Rest of Sequential

CPU Code

4
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA ARCHITECTURE
PROGRAMMING MODEL

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS

• Parallel portion of application: execute as a kernel

• Entire GPU executes kernel, many threads

• CUDA threads:

• Lightweight

• Fast switching

• Tens of thousands execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

6
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: PARALLEL THREADS

• A kernel is a function executed on the
GPU

• Array of threads, in parallel

• All threads execute the same code, can
take different paths

• Each thread has an ID

• Select input/output data

• Control decisions

float x = input[threadID];
float y = func(x);
output[threadID] = y;

7
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: SUBDIVIDE INTO BLOCKS

8
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: SUBDIVIDE INTO BLOCKS

•Threads are grouped into blocks

9
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: SUBDIVIDE INTO BLOCKS

•Threads are grouped into blocks

•Blocks are grouped into a grid

10
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: SUBDIVIDE INTO BLOCKS

•Threads are grouped into blocks

•Blocks are grouped into a grid

•A kernel is executed as a grid of blocks of threads

11
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA KERNELS: SUBDIVIDE INTO BLOCKS

•Threads are grouped into blocks

•Blocks are grouped into a grid

•A kernel is executed as a grid of blocks of threads

GPU

12
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

• Each kernel is executed on one
device

• Multiple kernels can execute on a
device at one time………

CUDA-capable GPU

CUDA thread
• Each thread is executed by a core

CUDA core

CUDA thread block

• Each block is executed by one SM
and does not migrate

• Several concurrent blocks can
reside on one SM depending on
the blocks’ memory requirements
and the SM’s memory resources…

CUDA Streaming
Multiprocessor

CUDA kernel grid

...

KERNEL EXECUTION

13
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

COMMUNICATION WITHIN A BLOCK

•Threads may need to cooperate

•Memory accesses

•Share results

•Cooperate using shared memory

•Accessible by all threads within a block

•Restriction to “within a block” permits scalability

•Fast communication between N threads is not feasible when N large

14
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRANSPARENT SCALABILITY

1 2 3 4 5 6 7 8 9 10 11 12

1 2

3 4

5 6

7 8

9 10

11 12

15
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRANSPARENT SCALABILITY

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8

9 10 11 12

16
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TRANSPARENT SCALABILITY –

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 ...
Idle Idle Idle

17
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA PROGRAMMING MODEL - SUMMARY

•A kernel executes as a grid of

thread blocks

•A block is a batch of threads

•Communicate through shared memory

•Each block has a block ID

•Each thread has a thread ID

Host

Kernel 1

Kernel 2

Device

0 1 2 3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

1D

2D

18
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA ARCHITECTURE
MEMORY MODEL

19
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU ARCHITECTURE

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

48GB with bandwidth currently up to 1 TB/s

Streaming Multiprocessors (SMs)

SMs perform the actual computations

Each SM has its own:

Control units, registers, execution pipelines, caches

Two Main components

DR
AM

 I/
F

G
ig

a
Th

re
ad

HO
ST

 I/
F

DR
AM

 I/
F

DRAM
 I/F

DRAM
 I/F

DRAM
 I/F

DRAM
 I/F

L2

20
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY HIERARCHY

•Thread

•Registers

21
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY HIERARCHY

•Thread

•Registers

•Thread

•Local memory

22
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY HIERARCHY

•Thread

•Registers

•Thread

•Local memory

•Block of threads

•Shared memory

23
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY HIERARCHY

•Thread

•Registers

•Thread

•Local memory

•Block of threads

•Shared memory

•All blocks

•Global memory

24
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA-C/Fortran
INTRODUCTION

25
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

WHAT IS CUDA?
•CUDA Architecture

•Expose general-purpose GPU computing as first-class capability

•Retain traditional DirectX/OpenGL graphics performance

•CUDA C/Fortran

•Based on industry-standard C/Fortran

•A handful of language extensions to allow heterogeneous programs

•Straightforward APIs to manage devices, memory, etc.

26
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA C/FORTRAN: THE BASICS

Host

▪ Terminology

▪ Host – The CPU and its memory (host memory)

▪ Device – The GPU and its memory (device memory)

Device

27
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HELLO, WORLD!

int main(void) {
printf("Hello, World!\n");
return 0;

}

• This basic program is just standard C/Fortran that runs on the host

• NVIDIA’s compiler (nvcc/nvfortran) will not complain about CUDA programs with no device code

• At its simplest, CUDA C/Fortran is just C/Fortran!

program main
implicit none
print *, “Hello World”

end program main

28
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HELLO, WORLD! WITH DEVICE CODE

__global__ void kernel(void) {
}

int main(void) {
kernel<<<1,1>>>();
printf("Hello, World!\n");
return 0;

}

• Two notable additions to the original “Hello, World!”

module printgpu
contains

attributes(global) subroutine print_form_gpu()
implicit none

end subroutine print_form_gpu
end module printgpu

program testPrint
use printgpu
use cudafor
implicit none

call print_form_gpu<<<1, 1>>>()

end program testPrint

29
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

• Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC
modeling and simulation application

• The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting CUDA C and Fortran

• The command to compile CUDA C/C++ code is ‘nvcc’

• The command to compile CUDA Fortran code is ‘nvfortran’

nvcc main.cu

nvfortran -cuda main.f90

30
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HELLO, WORLD! WITH DEVICE CODE

__global__ void kernel(void) {
}

•Keyword __global__ in C and attribute global in Fortran indicates that a function

•Runs on the device

•Called from host code

•nvcc/nvfortran splits source file into host and device components

•NVIDIA’s compiler handles device functions like kernel()

•Standard host compiler handles host functions like main()

•gcc

•Microsoft Visual C

attributes(global) subroutine print_form_gpu()

end subroutine print_form_gpu

31
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HELLO, WORLD! WITH DEVICE CODE

•Triple angle brackets mark a call from host code to device code

•Sometimes called a “kernel launch”

•We’ll discuss the parameters inside the angle brackets later

•This is all that’s required to execute a function on the GPU!

int main(void) {
kernel<<< 1, 1 >>>();
printf("Hello, World!\n");
return 0;

}

program testPrint
use printgpu
use cudafor
implicit none

call print_form_gpu<<<1, 1>>>()

end program testPrint

32
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

A MORE COMPLEX EXAMPLE

•A simple kernel to add two integers:

•As before, __global__ is a CUDA keyword meaning

•add() will execute on the device … so a, b, and c must point to device memory

•How do we allocate memory on the GPU?

•add() will be called from the host

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}

attributes(global) subroutine add(a, b, c)
int, device :: a(1), b(1), c(1)

c(1) = a(1) + b(1)

end subroutine vecAdd_kernel

33
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

33
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CPU + GPU
Physical Diagram

▪ CPU memory is larger, GPU memory has more bandwidth

▪ CPU and GPU memory are usually separate, connected by
an I/O bus (traditionally PCIe)

▪ Any data transferred between the CPU and GPU will be
handled by the I/O Bus

▪ The I/O Bus is relatively slow compared to memory
bandwidth

▪ The GPU cannot perform computation until the data is
within its memory

High
Capacity
Memory

Shared Cache

High Bandwidth
Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

IO Bus

GPUCPU

34
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW – STEP 1

1. Copy input data from CPU memory to GPU
memory

PCI Bus

35
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW – STEP 2

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

PCI Bus

36
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW – STEP 3

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

4. Unified Memory changes the nature of flow
• Some of the basics remains same

PCI Bus

40
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MEMORY MANAGEMENT
•Host and device memory are distinct entities

•Basic CUDA API for dealing with explicity device memory managment

•cudaMalloc(), cudaFree(), cudaMemcpy()

•Similar to their C equivalents, malloc(), free(), memcpy()

•Similar to their Fortran equivalents, allocate(), deallocate

•Array should be defined as allocatable

•CUDA API for using Unified memory is

• C API: cudaMallocManaged(), cudaFree()

• Fortran: Declare variable with managed, allocatable attribute

•real, managed, allocatable, dimension(:,:) :: A, B, C

* For this session we will be making use of Unified Memory

41
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

A MORE COMPLEX EXAMPLE: MAIN()

int main(void) {

int *a, *b, *c;

int size = sizeof(int);

of a, b, c

cudaMallocManaged(&a, size);

cudaMallocManaged(&b, size);

cudaMallocManaged(&c, size);

add<<< 1, 1 >>>(a, b, c);

cudaFree(a); cudaFree(b);

cudaFree(c);

return 0;

}

program main
use cudafor

real, managed, allocatable, dimension(:,:) ::
a, b, c

allocate(a(n))
allocate(b(n))
allocate(c(n))

call add<<<1, 1>>>(n, a, b, c)

deallocate(d_a)
deallocate(d_b)
deallocate(d_c)

end program main

42
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PARALLEL PROGRAMMING IN CUDA

•But wait…GPU computing is about massive parallelism

•So how do we run code in parallel on the device?

•Solution lies in the parameters between the triple angle brackets:

add<<< 1, 1 >>>(a, b, c);

add<<< N, 1 >>>(a, b, c);

•Instead of executing add() once, add() executed N times in parallel

43
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PARALLEL PROGRAMMING IN CUDA

•With add() running in parallel…let’s do vector addition

•Terminology: Each parallel invocation of add() referred to as a block

•Kernel can refer to its block’s index with the variable

•C: blockIdx.x

•Fortran: blockIdx%x

•Each block adds a value from a[] and b[], storing the result in c[]:

•By using blockIdx.x to index arrays, each block handles different indices

44
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PARALLEL PROGRAMMING IN CUDA

Block 1

c[1] = a[1] + b[1];

__global__ void add(int *a, int *b, int *c)
{

c[blockIdx.x] = a[blockIdx.x] +
b[blockIdx.x];
}

Block 0

c[0] = a[0] + b[0];

Block 2

c[2] = a[2] + b[2];

Block 3

c[3] = a[3] + b[3];

This is what runs in parallel on the device

attributes(global) subroutine add(n, a, b, c)
integer, value :: n
real(8), device :: a(n), b(n), c(n)

c(blockidx%x) = a(blockidx%x)+
b(blockidx%x)

end subroutine add
}

45
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

THREADS

•Terminology: A block can be split into parallel threads

•Let’s change vector addition to use parallel threads instead of parallel blocks:

•We use threadIdx.x instead of blockIdx.x in add()

__global__ void add(int *a, int *b, int *c)
{

c[threadIdx.x] = a[threadIdx.x] +
b[threadIdx.x];
}

attributes(global) subroutine add(n, a, b, c)
integer, value :: n
real(8), device :: a(n), b(n), c(n)

c(threadidx%x) = a(threadidx%x)+
b(threadidx%x)

end subroutine add

add<<<N,1>>>(a, b, c) add<<<1,N>>>(a, b, c);

46
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

USING THREADS AND BLOCKS

• We’ve seen parallel vector addition using

•Many blocks with 1 thread apiece

•1 block with many threads

• Let’s adapt vector addition to use lots of both blocks and threads

• After using threads and blocks together, we’ll talk about why threads

• First let’s discuss data indexing…

47
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

INDEXING ARRAYS WITH THREADS AND BLOCKS

•No longer as simple as just using threadIdx.x or blockIdx.x as indices

•To index array with 1 thread per entry (using 8 threads/block)

•If we have M threads/block, a unique array index for each entry given by

int index = threadIdx.x + blockIdx.x * M;

int index = x + y * width;

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

threadIdx.x

0 1 2 3 4 5 6 7
threadIdx.x

0 1 2 3 4 5 6 7
threadIdx.x

0 1 2 3 4 5 6 7
threadIdx.x

0 1 2 3 4 5 6 7

48
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

INDEXING ARRAYS: EXAMPLE

•In this example, the red entry would have an index of 21:

int index = threadIdx.x + blockIdx.x * M;

= 5 + 2 * 8;

= 21;

th
re
ad
Id
x.
x
=
5

blockIdx.x = 2

M = 8 threads/block

0 178 16 18 19 20 2121 3 4 5 6 7 109 11 12 13 14 15

49
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ADDITION WITH THREADS AND BLOCKS

• The blockDim.x is a built-in variable for threads per block:

int index= threadIdx.x + blockIdx.x * blockDim.x;

• So what changes in main() when we use both blocks and threads?

__global__ void add(int *a, int *b, int *c)
{

int index = threadIdx.x + blockIdx.x
* blockDim.x;

c[index] = a[index] + b[index];
}

attributes(global) subroutine add(n, a, b, c)

integer, value :: n
real(8), device :: a(n), b(n), c(n)
integer :: id

id = (blockidx%x-1)*blockdim%x +
threadidx%x

c(id) = a(id) + b(id)

end subroutine add

Note we used (blockidx%x-1) for Fortran as Fortran numbering starts from 1

50
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PARALLEL ADDITION (BLOCKS/THREADS): MAIN()

#define N (2048*2048)

#define THREADS_PER_BLOCK 512

add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(a, b, c);

blockSize = dim3(512,1,1)

! Number of thread blocks in grid

gridSize = dim3(ceiling(real(n)/real(blockSize%x)) ,1,1)

call add<<<gridSize, blockSize>>>(n, d_a, d_b, d_c)

51
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA SPEEDUP

1.00X

4000.47X

0.00X

500.00X

1000.00X

1500.00X

2000.00X

2500.00X

3000.00X

3500.00X

4000.00X

4500.00X

SERIAL NVIDIA TESLA V100

Sp
ee

d-
U

p

Speed-up

HPC SDK 20.11, NVIDIA Tesla V100, DGX1

52
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://developer.nvidia.com/hpc-sdk

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

THANK YOU

