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Communication Optimal and Tiled Algorithms for Dense Linear Algebra:
Auto-Tuning Opportunities in this new Design Space.

Julien Langou, University of Colorado Denver.

ASE seminar (Advanced Supercomputing Environment)

Friday March 27th, 2008. @ o
O DTSQRT

In this talk, we will first present recent communication-optimal and tiled algo

. DLARFB

rithms for the LU factorization and the QR factorization introduced in [1,2,3 . DSSREB
then, we will motivate the need for performance auto-tuning in these algorithms
and give some examples of opportunities in software auto-tuning. ~Our new
communication-optimal and tiled algorithms represent a radical change with the
current generation of linear algebra software (e.g. LAPACK and Scal APACK).
“They offer considerable advantage on a wide variety of platforms: sequential,
multicore, parallel distributed, GPU acceleration. While we know that these al-
gorithms are optimal in the big O sense, while we have proof-of-concept imple-
mentations of these algorithms, a ot remains to be done in finely tune these algo-
rithms for a given (possibly heterogeneous) architecture. We believe the answer is
in software auto-tuning

Il
w
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For more information:

o Alfredo Buttari, Julien Langou, Jakub Kurzak and Jack Dongarra. A class of parallel tiled linear algebra
algorithms for multicore architectures. Parallel Computing, 35:38-53, 2009.

o Alfredo Buttari, Julien Langou, Jakub Kurzak and Jack Dongarra. Parallel tiled QR factorization for multicore
architectures. Concurrency Computat.: Pract. Exper., 20(13):1573-1590, 2008.

e James W. Demmel, Laura Grigori, Mark F. Hoemmen, and Julien Langou. Communication-optimal parallel
and sequential QR and LU factorizations. arXiv:0808.2664.

® James W. Demmel, Laura Grigori, Mark F. Hoemmen, and Julien Langou. Implementing Communication-
Optimal Parallel and Sequential QR Factorizations. arXiv:0809.2407.
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1. TSQR: Tall Skinny QR
2. CAQR: Communication Avoiding QR
AllReduce Algorithms: Application
to Householder QR Factorization
Jim Demmel, University of California, Berkeley;
Laura Grigori, INRIA, France;
Mark Hoemmen, University of California, Berkeley;
Julien Langou, University of Colorado, Denver
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Reduce Algorithms: Introduction
The QR factorization of a long and skinny matrix with its data partitioned
vertically across several processors arises in a wide range of applications.

Input: Output:
Ais block distributed by rows Qis block distributed by rows
Ris global

I I

Auto-Tuning Opportunities in this new Design Space.

Example of applications: in block iterative methods.

a) in iterative methods with multiple right-hand sides (block iterative methods:)

1) Trilinos (Sandia National Lab.) through Belos (R. Lehoucq, H. Thornquist, U.
Hetmaniuk).

2)  BlockGMRES, BIockGCR, BlockCG, BIockQMR, ...

£

in iterative methods with a single right-hand side
1) s-step methods for linear systems of equations (e.g. A. Chronopoulos),

2)  LGMRES (Jessup, Baker, Dennis, U. Colorado at Boulder) implemented in PETSc,
3)  Recent work from M. Hoemmen and J. Demmel (U. California at Berkeley).

e in iterative eigenvalue solvers,

1)

PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),

2)  HYPRE (Lawrence Livermore National Lab.) through BLOPEX,

3)  Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U.
Hetmaniuk),

4)  PRIMME (A. Stathopoulos, Coll. William & Mary ),

5)  And also TRLAN, BLZPACK, IRBLEIGS.
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Reduce Algorithms: Introduction

Example of applications:

a)  inlinear least squares problems which the number of equations is extremely larger
than the number of unknowns

b)  in block iterative methods (iterative methods with multiple right-hand sides or
iterative eigenvalue solvers)

) in dense large and more square QR factorization where they are used as the panel
factorization step

Communication Optimal and Tiled Algorithms for Dense Linear Algebra: |1
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Blocked LU and QR algorithms (LAPACK)

LAPACK block LU (right-looking): dgetrf LAPACK block QR (right-looking): dgeqrf

dgetf2

Wid |

dtrsm (+ dswp)

dgeqf2 + dlarft

" qr(ll

‘Panel

E—a\=3

dgemm

B-31=

ubmatri

Update of the

b
)
-
I
i
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Blocked LU and QR algorithms (LAPACK)

LAPACK block LU (right-looking): dgetrf

i
dgetf2

g Latency bounded:

3 - ,u(l, more than nb AllReduce for n*nb? ops
£l

g dtrsm (+ dswp) CPU - bandwidth bounded:

E the bulk of the computation: n*n*nb ops
25 E=-a\E= highly paralleliable, efficient and saclable.
B E i
)

: E-E-1
- o
2
= =]

E

of LU and QR.

Parallelize the update: dgemm
« Easy and done in any reasonable software. [~
* This is the 2/3n3 term in the FLOPs count. D’_ D -I
* Can be done i with LAPACK: i BLAS

NIz

Parallel

dgetf2
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dgemm
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e o

Communication Optimal and Tiled Algorithms for Dense Linear Algebra:
Auto-Tuning Opportunities in this new Design Space.

t

Parallelization of LU and QR.

Parallelize the update: dgemm

* Easy and done in any reasonable software. D D I [~

* This is the 2/3n? term in the FLOPs count.

* Can be done with LAPACK: i BLAS
Parallelize the panel factorization: dgetf2
+ Not an option in multicore context (p < 16 )
* See e.g. ScaLAPACK or HPL but still by far the slowest and the = lu(]

bottleneck of the computation.

Hide the panel factorization: dgetf2
« Lookahead (see e.g. High Performance LINPACK)
*+ Dynamic Scheduling “ ()

Communication Optimal and Tiled Algorithms for Dense Linear Algebra:
Auto-Tuning Opportunities in this new Design Space.
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Hiding the panel factorization with
dynamic scheduling.
HEEEE BEEEEN
HEEEEE EEEEE
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Time

Courtesy from Alfredo Buttari, UTennessee
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What about strong scalability? What about strong scalability?
N=1536 We can not hide the panel factorization (n?) with the MM(n?), actually
NB =64 it is the MMs that are hidden by the panel factorizations!
procs = 16
-_—— = = = = o= = h
NEED FOR NEW MATHEMATICAL ALGORITHMS
EE E NN EN ER 100D |
Courtesy from Jakub Kurzak, UTennessee
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A new generation of a |go rithms? 2005-2007: New algorithms based on 2D partitionning:
Alge ms follow hardware evolution along time.
L\'/NPfCK (SO'SL ReIZ °n| 1 BLAs u‘ — UTexas (van de Geijn): SYRK, CHOL (multicore), LU, QR (out-of-core)
(Ueciorjopeistions) - Level COERIEID — UTennessee (Dongarra): CHOL (multicore)
— HPC2N (K3gstrém)/IBM (Gustavson): Chol (Distributed)
LAPACK (90's) Rely on — UCBerkeley (Demmel)/INRIA(Grigori): LU/QR (distributed)
(Blocking, cache friendly) - Level-3 BLAS operations — UCDenver (Langou): LU/QR (distributed)
New Algorithms (00's) Rely on A 3" revolution for dense linear algebra?
(multicore friendly) - a DAG/scheduler
- block data layout
- some extra kernels
Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, ... )
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels
Those new algorithms need new kernels and rely on efficient scheduling algorithms.
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Reduce Algorithms: Introduction

Example of applications:

al

in block iterative methods (iterative methods with multiple right-hand sides or
iterative eigenvalue solvers),

b) i dense large and more square QR factorization where they are used as the panel
factorization step, or more simply

) inlinearleast squares problems which the number of equations is extremely larger
than the number of unknowns.

The main characteristics of those three examples are that
a) there s only one column of processors involved but several processor rows,
b)  all the data is known from the beginning,
) and the matrix is dense.
Various methods already exist to perform the QR factorization of such matrices:
a) Gram-Schmidt (mgs(row),cgs),
b) Householder (ar2, arf),
) or CholeskyQR.
We present a new method:

Allreduce Householder (rhh_qr3, rhh_qrf).

The CholeskyQR Algorithm

aik_l

SYRK:  Ci=ATA (mn?)
CHOL:  R:=chol(C) (n3/3)

<«—chol (
TRSM:  Q:=A/R (mn?)

N )
i1
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Bibligraphy

* A. Stathopoulos and K. Wu, A block orthogonalization procedure with
constant synchronization requirements, SIAM Journal on Scientific
Computing, 23(6):2165-2182, 2002.

* Popularized by iterative eigensolver libraries:
1

PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),
2)  HYPRE (Lawrence Livermore National Lab.) through BLOPEX,

3)  Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucd, H. Thornquist, U.
Hetmaniuk),
4)  PRIMME (A. Stathopoulos, Coll. William & Mary ).
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Parallel distributed CholeskyQR

The CholeskyQR method in the parallel distributed context can be described as follows:

1: SYRK: C:=ATA (mn?)
c 0
procs (on proc 0) 2 q Pa: + ’2 + N’H

3:CHOL: R :=chol( C n¥/3
(c)  (m3) 34, 3 —chol(
4: MPI_Bdcast Broadcast the R factor on proc 0

Q)
toall the other processors 5 — /N
5: TRSM: Q:=AR (mn?)

2: MPI_Reduce:  C:=sum,

Communication Optimal and Tiled Algorithms for Dense Linear Algebra:
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In this experiment, we fix
the problem: m=100,000 . . 1 W _I
and 50, Efficient enough? Simple enough?
NN YR
34 W <ol W )
° s -~ )
20.48 § 500
S
512 2 400
§ 2.56 == \ 350 — cholqr Int choleskyqr_A_vO(Int mloc, Int n, double *A, Int Ida, double *R, Int Idr,
= S N — S 300 MPI_Comm mpi_comm){
@ 1.28 — S N —cas
= 0.64 ~ RN ;260 ‘mgs(row) int info;
032 < 2 150 ~—aqrf cblas_dsyrk( CblasColMaijor, CblasUpper, CblasTrans, n, mloc,
0.16 N N £ 100 {—> ~=-mgs 1.0e+00, A, Ida, 0e+00, R, Idr );
0.08 — S 50 ~—— “ MPI_Allreduce( MPI_IN_PLACE, R, n*n, MPI_DOUBLE, MPI_SUM, mpi_comm );
1 2 4 8 16 32 S lapack_dpotrf( lapack_upper, n, R, Idr, &nfo );
= L2 4 s 16 m cblas_dtrsm( CblasColMajor, CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit,
#of procs # of procs mloc, n, 1.0e+00, R, Idr, A, Ida );
return 0;
ot mes
oo | = |« | e |
FLOP/sec/proc
1 a2 on wsar @7 Bs sy w1 (28 Ceeis) b
& wes a1 M3 @ w7 G2 22 66 mm @)
8 a0 (0 o4 (083 %7 00 28 Go) 215 (96 (.. and, OK, you might want to add an MPI user defined datatype to send only the upper part of R)
6 w02 009 se2 s s %) 13 (7)) e @i
2 s oy @9 O3 0 ©s) 15 09 88 08)
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m=100, n=50
< 1.00E-14
=z ~+cholgr
100615 -cgs
=
S 1.00E-16 " mes
7
< 1.00E-+0000E +0200 +0400E +Q600E +0S00E+1000E +1200E+14  Householder
= K
1.00E+00
1.00E-02
— 1.00E-04
-
O 1.00E-06 _‘Ch"'qr
¢ 1.00E-08 ces
= 100E-10 mes
1.00E-12 ~“Householder
1.00E-14
1.00E-16

1.00E+Q0DOE +Q200E+400E+Q60OE +Q800E + 1000E+ 1200 +14
K5(A)
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Parallel distributed CholeskyQR

The CholeskyQR method in the parallel distributed context can be described as follows:

1: SYRK: C=ATA (mn2)

2: MPI_Reduce:  C:=sum,

c 0
procs (on proc 0) 2 q Pa: + ’2 +

3:CHOL: R :=chol( C n¥/3
(c)  (m3) 34, —chol(
4: MPI_Bdcast Broadcast the R factor on proc 0

X))
toall the other processors 5 — /N
5: TRSM: Q:=AR (mn?)

This method is extremely fast. For two reasons:
1. first, there is only one or two communications phase,
2. second, the local computations are performed with fast operations.
Another advantage of this method is that the resulting code is exactly four lines,
3. sothe method is simple and relies heavily on other libraries.
Despite all those advantages,
4. this method is highly unstable.
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Reduce Algorithms

The gather-scatter variant of our algorithm can be
summarized as follows:

i

. perform local QR factorization of the matrix A

2. gather the p R factors on processor 0

3. perform a QR factorization of all the Rputthe >+ QWRIR Qe—ar (R !
ones on top of the others, the R factor Q R
obtained is the R factor

Q R

4. scatter the the Q factors from processor 0 to
all the processors Q Ry

5.

. multiply locally the two Q factors together, s N
done. : IH‘I

Communication Optimal and Tiled Algorithms for Dense Linear Algebra:
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Reduce Algorithms

* This is the scatter-gather version of our algorithm.

* This variant is not very efficient for two reasons:
— first the communication phases 2 and 4 are highly involving
processor 0 ;
- Isecond the cost of step 3 is p/3*n?, so can get prohibitive for
arge p.

* Note that the CholeskyQR algorithm can also be
implemented in a scatter-gather way but reduce-
broadcast. This leads naturally to the algorithm presented
below where a reduce-broadcast version of the previous
algorithm is described. This will be our final algorithm.

Communication Optimal and Tiled Algorithms for Dense Linear Algebra:
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On two processes

Q”I,!![I}!\.
y
I!Iu\?
\ i

N |

Apply ( © O 9’
0,

v

The big picture ....

_ OO -
tme C.1:) communication
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Latency but also possibility of fast
panel factorization.

QR factorization and construction of T

DGEQR3 is the recursive

000
algorithm (see EImroth and Perf in MFLOP/sec (Times in sec)

Gustavson, 2000), DGEQRF and o DGEQR3 DGEQRF DGEQR2
DGEQR2 are the LAPACK 50 1736 (029) 650 (077) 646  (0.77)
routines.
100 2405  (0.83) 626  (317) 653 (3.04)
* Times include QR and DLARFT. 150 2779 (L60) 816  (5.46) 642  (6.94)
+ Runon Pentium I, 200 3125 (253) 1113 (7.09) 659 (1198)
o

4

H

~~DGEQRF
~—DGEQR2

MFLOP/sec
B

B

V-

B

10030 0 9 0 0 W 0 5 10010 10 10 190 150 160 17 150 150 200

m=1000,000, the x axis is n

When only R is wanted

Al

> lar(

M —>are
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When only R is wanted: The
MPI_Allreduce

In the case where only R is wanted, instead of constructing our own tree, one can simply use
MPI_Allreduce with a user defined operation. The operation we give to MPI is basically the
Algorithm 2. It performs the operation:

oR ( y— H|

This binary operation is associative and this is all MPI needs to use a user-defined operation on
a user-defined datatype. Moreover, if we change the signs of the elements of R so that the
diagonal of R holds positive elements then the binary operation REactor becomes
commutative.

The code becomes two lines:
lapack_dgeqrf( mloc, n, A, Ida, tau, &dlwork, lwork, &info );
MPI_Allreduce( MPI_IN_PLACE, A, 1, MPI_UPPER,
LILA_MPIOP_QR_UPPER, mpi_comm);

Communication Optimal and Tiled Algorithms for Dense Linear Algebra:
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* In this experiment, we fix the 120
problem: m=100,000 and n=50. \
Then we increase the number of 100 =
processors. 8 il \ ~cholqr
s
o 80 —=rhh_qr3
*  Once more the algorithm S ——cgs
rhh_qr3 is the second behind I~ 60 \ - X
CholeskyQR. Note that rhh_qr3 is g mgs(row)
incondionnally stable whilethe £ —rhh_qrf
stability of CholeskyQR depends 40 —qrf
on the square of the condition —
number of the initial matrix. 20 —ar2
0

12 4‘””0:25 16 32
[ e e e
Cassd Cuoad

1 1200 @) 11 673 735 680 519 (e 1 (278 343 (460
2 a3 s 108 (248 789 (a7 90 (a0 32 (601 23 (12 02 (25
4 wes 21 99 (2 N3 07 %7 B2 30 6oy 22 (&) 188 (666)
8 au0 1) S8 s &4 O 367 (170) M0 (18 208 (o) 17 G54
16 2 (o) 1038 (030 s2 08 36 () 278 (112 183 (7)) 163 (91
2 w8 oo w9 018 49 ©F 20 ©s) B3 04 158 ©9) 15 (108

Q and R: Weak scalability with respect to m

*  We fix the local size to be mloc=100,000 150
and n=50. When we increase the number 140
of processors, the global m grows o
proportionally. 8110 N —cholgr
Soo — ]
+ rhh_qr3 isthe Allreduce algorithm with 3 g N —cgs
recursive panel factorization, rhh_qrfis & 70 +— s ;
the same it LaPACK or R 60 mes(row)
We see the obvious benefit of using < :'g ——rhh_qif
recursion. See as well (6). qr2 and arf 3 g m——— 2 {
correspond to the ScaLAPACK 20 N ——qr2
Householder QR factorization routines. i

] o | owe [ | e | owe | ] =
1
:
,
:

1212 413 157 (@6) 702 (213) 519 (964 98 (1256 31 (1423)
465 (107 1023 (as3)  saa (533 /6 (109 277 (1805 205 (387) 202 (480
a1 (o) %7 (s1) 672 (4 aa (209 23 (548 206 @a2m) 183 (729)
@87 (109 %2 (520) 671 (48 B2 (509 283 (76 205 (a4 18 (8o

16 4513 () ses (527 @2 (4s) B3 (504 274 (822) 200 (4% 172 (@910
2 a1 @) sas (529 &8 (97 25 (1538 265 (88 188 (527 163 (2061
6 a9 (2 s30 (538 8 (9% 23 (1545 270 (85) 184 (579 166 (3013)
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Q and R: Weak scalability with respect to n
+ We fix the global size 200
m=100,000 and then we n gffect
increase n as sart(p) so that the o
workload mn? per processor 1 * cholqr
remains constant. 3 -=-rhh_qr3
2 i ——cgs
+ Due to better performance in 9' \ | [mesaow
the local factorization or SYRK, & « ——rhh_qrf
CholeskyQR, rhh_q3 and @ N —
rhh_grf exhibit increasing \:/ e
performance at the beginning ] ——ar2
until the n® comes into play

0
1(50)  2(71)  4(100) S(141) 16(200) 32(283) 64(400)
FLop/sec/os Prey
=
Caso) Quond

1 wos () pe0 (7 67 (1) si7 () 196 (1263 P9 (131
2 sl02  (99) 160 (400 785 (64 01 (125§ 21 (157) 254 (1989 190 (@656
4 su1 s wea (3% 756 (es) 31 (278) 311 (607) 255 (1959 189 (645
5 sw2  ©s2) 1ms (s 723 (es) %5 (28w a5 (La) 278 (s 202 (s
1 sous (1o 192 se)  ess  (4s) 34 (30 513 (75 289 (729 13 (ss7)
2 w2 xm  wra @e) s @) %2 (3 sie (815 295 (1855 13 (582

6 4 (1ss)  s9 (96 323 (4 %1 (3 528 (e 282 (74 a4 (713

R only: Strong scalability

150
In this experiment, we fix the \\

1
problem: m=100,000 and n=50. Then 130 N

we increase the number of 120
processors. 10 cholqr

LN ——-rhh_qr3
—cgs
~—mgs(row)
—rhh_qif
o qif

MFLOP/sec/proc

—ar2

mnn

e @m0 @58 Gs1  eow (20 s (23) sm G20
2 wesss (023) 14w (02 s (1) 90 (64 a8 59 08 (657 4078 (613
4 %203 012 mema (o) 70 (79 87 (323) 20295 (18 36263 (44) 3606 (47)
8 we7ma (0O 19sss (052 es3 (09 367 (L70) w3 (6N B3 (7)) 0m (&)
16 G902 (o) ;oss (020 sam (059 36 (099) s (093 33m (099) e (098)
32 w2 (009 sssw (016 a22%  (037) 290  ©s) W26 (04) 2565 (060 2591 (060
6 wssss (004 770s (010 2589 (0%0) 28 (©3) %16 (022) w7 (048 1725 (044)
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R only: Weak scalability with respect to m

* Wefixthe local size to be mloc=100,000 180 T
and n=50. When we increase the number 140 171
of processors, the global m grows 120 S
proportionally. 8110 ———=—=| [—cholgr
5100 —~—rhh_qr3
S0 -
2 80 —~—cgs
L
5 Zx N ~—mgs(row)
% —rhh_qrf
40 -
30 ot
20 —ar2
10
0

@ 1z 4,8 1632 6
2] o | ee [o [ e |owe oo |

@ED s G w2 e w2 o) ms ooy er om0 e 0w
Tows @A s e w3 pa)  me  geen e (s ma (a9 s (am
047) 1165 (429) 820 (6.09) 414 (1209) 358 (1384 363 (1374) 347 (1440)
9939 (0.50) 1162 {4.30) 66.3 (7.53) 332 (1506) 351 (421 355 (1405 338 (1475)
w7 s ws2  Wm w1 g B3 gsen o (s B s w0 Gsa
w7 s s we)  me (s ;s (s ma (s ma Gsoy  we (s
S e e

rz;n‘NHS'
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Q and R: Strong scalability

In this experiment, we fix the problem: m=1,000,000 and n=50.
Then we increase the number of processors.

Blue Gene L
frost.ncar.edu

800

700 .\‘_‘\‘

600

500 ~+ReduceHH (QR3)

400 -#-ReduceHH (QRF)
300 Scal APACK QRF
~-Scal APACK QR2

MFLOPs/sec/proc

200

100

0
32 64 128 256
#of processors
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Conclusions

We have described a new method for the Householder QR factorization of skinny matrices. The
method is named Allreduce Householder and has four advantages:

1. there is only one synchronization point in the algorithm,

2. the method harvests most of efficiency of the computing unit by large local operations,
3. the method is stable,
4.

. and finally the method is elegant in particular in the case where only R is needed.

Allreduce algorithms have been depicted here with Householder QR factorization. However it
can be applied to anything for example Gram-Schmidt or LU.

Current development is in writing a 2D block cyclic QR factorization and LU factorization based
on those ideas.
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1. TSQR: Tall Skinny QR
2. CAQR: Communication Avoiding QR
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Alfredo Buttari, Jul
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a dlarfb(A[0][0], T[0][0], A[0][3]);
5. dtsqrt(A[0][0], A[1][0], T[1][0]);

6. dssrfb(A[1][0], T[1][0], A[0][1], A[1][1]);
D 7. dssrfb(A[1][0], T[1][0], A[0][1], A[1][1]);
8. dssrfb(A[1][0], T[1][0], A[0][1], A[1][1]);

for (k= 0; k < TILES; k++) {
dgeqrt(A[K][k], TIK[K]);
for (n = k+L; n < TILES; n++) {
diarfb(A[K][k], T[KI[K], A[K][n]);
for (m = k+1; m < TILES; m#+){
dtsqre(A[K][k], Alm][k], T[m][k]);
for (n = k+1; n < TILES; n++)
dssrfb(A[m][k], T(m][k], A[K][n], A[m][n]);
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k=1 k=2 k=3 Ay —Qo| Rao
—>Qu|Rax
@ oozoxr Al —>Qu|Rig
O DTSQRT —>Q:Ro
Az —>Qu0 R
‘ DLARFB —>Qu|Ru
A; — Q3 Ry
. DSSRFB
Execution of the parallel TSQR factorization on a binary tree of four processors. The gray boxes indicate where
local QR factorizations take place. The Q and R factors each have two subscripts: the first is the sequence number
within that stage, and the second is the stage number.
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Ay —>Qoo| Rop
—>Qo1 Roy
A —> A
— Qo Rz
A Az

A————— Ay

Execution of the sequential TSQR factorization on a flat tree with four submatrices. The gray boxes indicate where
local QR factorizations take place The Q and R factors each have two subscripts: the first is the sequence number
for that stage, and the second is the stage number.

0 —ou [

—oujf —o. [

o —

Ao R

~
Execution of a hybrid parallel / out-of-core TSQR factorization. The matrix has 16 blocks, and four processors can execute local QR factorizations simultaneously.
‘The gray boxes indicate where local QR factorizations take place. We number the blocks of the input matrix A in hexadecimal to save space (which means that the
subscript letter A is the number 101, but the non-subscript letter A is a matrix block). The Q and R factors each have two subscripts: the firt s the sequer

e number

for that stage, and the second is the stage number.
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A is m—by-n with m = pb and n = gb.
We are only interested in the first step of the Householder QR factorization.

— m= pb

Communication Optimal and Tiled Algorithms for Dense Linear Algebra:
Auto-Tuning Opportunities in this new Design Space.

1 Classic unblocked Householder factorization: DGEQF2

1. DGEQRZ: Panel factorization.

A
[]

=20p-4p*

— D 2mb?

2. DTARE Apply the V vector one-by-one to the remaimng matrix. ThIS

makes b small step

e

@pa—2p 2q1 1

total
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2 Classic block Householder factorization: DGEQRF

T

EQRZ: Panel Tactorization.

P=2p-hpt

O0A ¢
I

Construction of the T matrix o apply the Househodler by

N
N— [ 45 = (p— 5

270
block

ARFB. App\T\hc V vectors by block (o the
LN P
2p—1)(g—1)b
I ”’D ) (\ (q 1‘)(:‘ !

D +2p—1)lg— 1)
= (4p—1)(g— B

3,00

naining matrix

total (dpq Qb
i we want 0 compare quickly the unblocked Househodier code with the block Househodler code, there is an overhead of (p -+ )b There pb? overhead due to

ind gb® due to DLARFE.
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3 SUQRA
Siep 1
La. First QR factorization.

D 4

Construction of the T matrix o apply the Househodler by

N- ©

T.c. DLARES: Apply the V vectors by block 0 the remaining matrix.

OO — LD e

Step 2. (repeat this step (p 1) time:
Z.a. TSQR factorization (TS=triangle-square)

pAEE
block

RFT: Construction of the T matrix o apply the Househodler by

=
oo - N0, 000
010~ O EEE

total Spa—3p2q+ Db°

K10 the remaining matrix

This algorithm is going to perform 20% more FLOPS.= Need for inner blocking.
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4 SUQRA without blocking

Step 1
Ta.

N-0 w

FF: Apply the V vectors by bIock o (he remaining matrix

ISCQR factorization

Te

] — el [0 -

Step 2. (repeat this step (p 1) times
Z.a. TSQR factorization (TS=triangle-square)

N
L0

218

REFB: Apply the ¥ vectors by block 1o the re

DDD —  Apply ‘.‘DDD 4(g—1)p*
HEE EpEEn

total dpq 2p 2q - 9B

ining matrix

Exactly the same number of FLOPs as for the unblocked QR factorization
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5 comparison

unblocked QR unblocked SUQRA Blocked QR BlockedSUQRA
panel (2p 2p— b7 2p
T (=¥ Gp—3)p°

update | (4pg—2q—4p+ 200" | (3pg—2q—dp=2)F° | (pg—gq—4p+ )& | (5pg—2q—5p+2)F
total | (4pg—2q—2p+3)b° | (4pg—2q—2p+3)b° (4pg—q—p)b* b
We can Tntegrate those values to know the FLOPS count of the algorithm, we replace g by 7 when [ varies rom g to 1 and we replace p with p — g+ i. We assume
that p > g, i.e. the matrix s taller than longer.

‘This gives for the unblocked QR algorithm

=

q 4y
Y d(p—g+ii 2Ap—q+i)+3)b
=

g , 4,
= Y lp—dq-i+al —2p+2+ 0

= 3
. )L 1L apgiagd+don
= (p-dg- 9T 4% 2004247+ 30

= Crd -2 -2+ ¢ 22+ 2
(2pa’ =24 24" + 30" = 2pq + 24" + 39)

4
= (2 2pq+39)0°

P TP MY
= 2w = 3" = 2mb+ 3

The order is OK we find: 2mn? — 2n* as expected.

‘This gives for the block SUQRA:

Y (5(p—gq+i)i-2i
=

.
~ Y (5pi—5qi+5)6
=
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6 Remark on the panel factorization

Classical method

2026)07 — 26 | L

A
\
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I O v v e N I A [

44508

SUQRA
SUQRA-stepl
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which means 20% overhead.
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Trchitectires, September 2007
k=1 k=2 k=3

. DGEQRT
O DTSQRT
. DLARFB
. DSSRFB




Communication Optimal and Tiled Algorithms for Dense Linear Algebra: % |
Auto-Tuning Opportunities in this new Design Space. %L

An interesting middleware: SMPSs
Tile QR Factorization Performance

#pragma css task |
inout(RV1[NB][NB]) output(TINB[NB])
void dgeqrt(double *RV1, double *T);

#pragma css task |
inout(RINB][NB], V2[NB][NB]) output(T[NB]NB])
void dtsgrt(double *R, double *V2, double *T);

#pragma css task |
input(V1[NB][NB], T[NB][NB]) inout(C1[NB][NB])
void dlarfb(double *V1, double *T, double *C1);

#pragma css task |
input(V2[NB]INB], TINBIINB]) inout(C1(NB]INB], C2[NB](NB])
void dssrfb(double *v2, double *T, double *C1, double *C2);

#pragma css start From:
for (k = 0; k < TILES; k++) {
o Jakub Kurzak, Hatem Liaief, Jack Dongarra, and Rosa M.
dgeqrt(AKI[K], TIKITkD; Badia. Scheduling Linear Algebra Operations on Multi-
for (m = kt1; m < TILES; m++) core Processors. LAWN 213
dtsqrt(A[KI[K], Alm][K], T(m](K]); Seealso:
See also:
for (n = k+1; n < TILES; n++) {
dlarfb(AlKI[k], T(KI[K], ALK](n]);
fi = k+1: m < TILES; m++) Pérez, Enrique S. Quintana-Orti, and Gregorio Quin
dssrfb(Alm]k], Tim](k], A[K](n], Alm](n]); Orti.  Parallelizing dense and banded linear algebra li-
braries using SMPSs. UPC-DAC-RR-2008-64.

 Rosa M. Badia, José R. Herrero, Jesiis Labarta, Josep M.

}

#pragma css finish o Hatem Liaief, Jakub Kurzak, and Jack Dongarra. Schedul-
ing Two-sided Transformations using Algorithms-by-Tiles
on Multicore Architectures. LAWN 214.
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Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. LAWN 191 — A Class of Parallel Tiled Linear Algebra Algorithms for Multicore
Architectures, September 2007
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Cholesky —- 2-way Quad Clovertown
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Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. LAWN 191 — A Class of Parallel Tiled Linear Algebra Algorithms for Multicore
Architectures, September 2007
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QR -- 2-way Quad Clovertown
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Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. LAWN 191 — A Class of Parallel Tiled Linear Algebra Algorithms for Multicore
Architectures, September 2007
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Tile QR Factorization —— 3.2 GHz CELL Processor

20| SSRFB Peak|
——Tile QR

0 500 1000 1500 2000 2500 3000 3500 4000
Matrix Size

Performance of the tile QR factorization in single precision on a 3.2 GHz CELL processor with eight SPEs.
Square matrices were used. Solid horizontal line marks performance of the SSSRFB kernel times the number of
SPEs (22.16 x 8 = 177 [Gflop/s]).

“The presented implementation of tile QR factorization on the CELL processor allows for factorization of a 4000—
by-4000 dense matrix in single precision in exactly half of a second. To the author’s knowledge, at present, it is the
fastest reported time of solving such problem by any semiconductor device implemented on a single semiconductor

die.”
Jakub Kurzak and Jack Dongarra, LAWN 201 — QR Factorization for the CELL Processor, May 2008,
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§ Qand R: Strong scalability

by In this experiment, we fix the problem: m=1,000,000 and n=50.
Blue Gene L Then we increase the number of processors.
frost.ncar.edu
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Speedup of CALU over ScaLAPACK
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Speedup of CAQR over ScaLAPACK
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Strategy:

1. obtain some lower bounds for the cost (latency, bandwidth, # of operations) of LU, QR and Cholesky in
sequential and parallel distributed

2. compute the costs of our algorithms and compare with the lower bound.
Lower bounds:

1. For LU, observe that:

10 -B 1 10 -B
ATl 0 =AT I A-B
00 1 00171 1

therefore lower bound for matrix-matrix multiply (latency, bandwidth and operations) also holds for LU.
2. For Cholesky, observe that:
1 AT -B 1 I AT -B
A I1+AAT 0 | ={ A 1 I AB
-BT 0 D —B" (A-B)T Xx x7
however this gets nasty due to the AA” term in the initial matrix A. See Grey Ballard, James Demmel,

Olga Holtz, and Oded Schwartz. Communication-optimal Parallel and Se ial Cholesky d
UCB/EECS-2009-29, February 13th, 2009.

3. For QR, we needed to redo the proof of optimality of matrix-matrix multiply. See James W. Demmel, Laura
Grigori, Mark F. Hoemmen, and Julien Langou. Communication-avoiding parallel and sequential QR factor-
izations. arXiv:0902.2537, May 30th, 2008.

| Par. CAQR | PDGEQRF | Lower bound

4n’ 4n’ n?
#flops |35 3 0 7)

3n? 3n? n?
# words 4\/FlogP 4\/FlogP o ﬁ)

# messages | 3v/Plog’ P | 2log’P | O(VP)
Performance models of parallel CAQR and ScaLAPACK’s parallel QR factor-
ization PDGEQREF on a square n X n matrix with P processors, along with lower
bounds on the number of flops, words, and messages. The matrix is stored in
a 2-D P, x P. block cyclic layout with square b x b blocks. We choose b, P,,
and P, optimally and independently for each algorithm. Everything (messages,
words, and flops) is counted along the critical path.
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;

‘ Seq. CAQR ‘ Householder QR ‘ Lower bound
3 13

# flops in i 3 O(ni)
5 1 I

# words T 37 O(Tu{)

# messages | 12375 e O(y57)

Performance models of sequential CAQR and blocked sequential Householder
QR on a square n x n matrix with fast memory size W, along with lower bounds
on the number of flops, words, and messages.
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Autotuning opportunities:
kernel tuning: introduction of a lots of new kernels (e.g. QR fact. of a triangle on top of a square). For each
kernel:
1. how to optimize the blocking parameter (nb)?
2. which algorithmic variants to choose (left looking, recursive, ...) ?
3. the inner blocking parameter (ib).
Question 2 and 3 are standard autotuning problems. Choosing ib and the algorithmic vairant is done in term

of nb. Question 1 is more subtle. Choosing nb is done at the matrix level (1) since it influences the granularity
of the algorithm.

reduction algorithm: Which reduction tree to use? Binary tree? Flat tree? Hybrid tree? Each of these choices
represent an algorithm change. No framework to accomodate this yet.

scheduling: How to schedule all these tasks?
1. static scheduling or dynamic scheduling?
2. and in parallel distributed ...






