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Abstract— The parallel multigrid method is expected to play 

an important role in large-scale scientific computing on post-
peta/exa-scale supercomputer systems, and it also includes serial 
and parallel communication processes which are generally 
expensive. In the present work, new format for sparse matrix 
storage based on sliced Ellpack-Itpack (ELL) format is proposed 
for optimization of serial communication in data transfer 
through memories, and hierarchical coarse grid aggregation 
(hCGA) is introduced for optimization of parallel 
communication by message passing. The proposed methods are 
implemented for pGW3D-FVM, a parallel code for 3D 
groundwater flow simulations using the multigrid method, and 
the robustness and performance of the code was evaluated on up 
to 4,096 nodes (65,536 cores) of the Fujistu FX10 supercomputer 
system at the University of Tokyo. The parallel multigrid solver 
using the sliced ELL format provided performance improvement 
in both weak scaling (25%–31%) and strong scaling (9%–22%) 
compared to the code using the original ELL format. Moreover, 
hCGA provided excellent performance improvement in both 
weak scaling (1.61 times) and strong scaling (6.27 times) for flat 
MPI parallel programming model. 

Keywords—parallel computing; iterative solvers; multigrid; 
communication; matrix storage format; multicore  

I. INTRODUCTION 
A multigrid is a scalable method for solving linear 

equations and preconditioning Krylov iterative linear solvers, 
and is especially suitable for large-scale problems. The 
parallel multigrid method is expected to be one of the 
powerful tools on post-peta/exa-scale systems. Recently, 
HPCG (High Performance Conjugate Gradients) [1] was 
proposed as a new benchmark for evaluation of the practical 
performance of supercomputer systems. HPCG solves sparse 
matrices derived from finite-element application using 
conjugate gradient linear solver (CG) preconditioned with 
multigrid method. 

In previous works by the author [2,3,4], OpenMP/MPI 
hybrid parallel programming models were implemented for 
pGW3D-FVM, a 3D finite-volume simulation code for 
groundwater flow problems through heterogeneous porous 
media, by using parallel conjugate gradient (CG) solver with 
multigrid preconditioner (MGCG). The performance and the 
robustness of the developed code were evaluated on multicore 
clusters, such as the T2K Open Supercomputer (T2K/Tokyo) 
and the Fujitsu FX10 System (Oakleaf-FX) at the University 
of Tokyo [5], by using up to 4,096 nodes (65,536 cores) for 
both weak and strong scaling computations.  

It is well-known that convergence of the solver at the 
coarsest level of the multigrid cycle (coarse grid solver) 
strongly affects convergence of the entire process of multigrid 
[2,6,7,8]. The coarse grid aggregation (CGA) proposed in [3] 
improves the performance and the robustness of multigrid 
procedures with large numbers of MPI processes. In [4], the 
effect of a format of sparse matrix storage on the performance 
of MGCG was evaluated. The Ellpack-Itpack (ELL) format 
was applied to pGW3D-FVM, and it provided excellent 
improvement of memory access throughput, and the MGCG 
solver using the ELL format with CGA showed excellent 
scalable performance and robustness. The performance 
improvement from the original solver with the compressed 
row storage (CRS) format in [3] to the new one with ELL-
CGA at 4,096 nodes of the Fujitsu FX10 System (Oakleaf-
FX) was 13%–35% for weak scaling, and 40%–70% for 
strong scaling. 

The parallel multigrid method and MGCG include both of 
serial and parallel communication processes which are 
generally expensive. The serial communication is the data 
transfers through memory hierarchies of each processor. 
Because MGCG solver with sparse coefficient matrices is a 
memory-bound process, serial communication is a serious 
problem. In the present work, further modification is 
introduced into the ELL format of the coefficient matrices. 
The parallel communication is by message passing between 
computing nodes through the network using MPI. Hierarchical 
coarse grid aggregation (hCGA) is introduced for optimization 
of the parallel communication in the present work. 

The rest of this paper is organized as follows. In Section II, 
an overview of the target hardware and application is provided, 
and results of the previous works are briefly overviewed. In 
Section III, we give a summary of the method for optimization 
of serial and parallel communications. Finally, Section IV 
provides the results of computations, and final remarks are 
offered in Sections V. 

II. HARDWARE ENVIRONMENT AND TARGET APPLICATION 

A. Hardware Environment 
The Fujitsu FX10 system at the University of Tokyo 

(Oakleaf-FX) [9] is Fujitsu’s PRIMEHPC FX10 massively 
parallel supercomputer with a peak performance of 1.13 
PFLOPS. The Oakleaf-FX system consists of 4,800 
computing nodes of SPARC64™ IXfx with 16 cores (1.848 
GHz) [9]. The entire system consists of 76,800 cores and 154 
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TB memory. Each core has a 64 KB L1 instruction/data cache. 
A 12 MB L2 cache is shared by 16 cores on each node. On the 
SPARC64™ IXfx, each of the 16 cores accesses memory in a 
uniform manner. Nodes are connected via a 6-dimensional 
mesh/torus interconnect, called Tofu. Although users can 
specify the topology of the network on Fujitsu FX10, this 
capability was not used in the present work. 

B. pGW3D-FVM with MGCG Solver 
pGW3D-FVM, a parallel simulation code based on the 

finite-volume method (FVM), solves groundwater flow 
problems through saturated heterogeneous porous media (Fig. 
1). The problem is described by the following Poisson 
equation and boundary condition (1):  
 
 (1) 
 
where denotes the potential of the water head, (x,y,z) 
describes the water conductivity, and q is the value of the 
volumetric flux of each finite-volume mesh and is set to a 
uniform value (=1.0) in this work.  
(a)                                                             (b) 

 
 
 
 
 

 
Fig.1 Example of groundwater flow through heterogeneous porous media. (a) 
Distribution of water conductivity; (b) Streamlines 

A heterogeneous distribution of water conductivity in each 
mesh is calculated by a sequential Gauss algorithm, which is 
widely used in the area of geostatistics [10]. The minimum 
and maximum values of water conductivity are 10-5 and 105, 
respectively, with an average value of 1.0. Each mesh is a 
cube, and distribution of the meshes is structured as finite-
difference-type voxels. In the present work, an entire model 
consists of clusters of small models with 1283 meshes with 
same pattern [2,3,4]. The conjugate gradient (CG) solver with 
multigrid preconditioner (MGCG) [2,3,4] was applied for 
solving Poisson’s equations with symmetric positive definite 
(SPD) coefficient matrices derived by pGW3D-FVM. A very 
simple geometric multigrid with a V-cycle algorithm is applied, 
where 8 children form 1 parent mesh in an isotropic manner 
for structured finite-difference-type voxels. The level of the 
finest grid is set to 1, and the level is numbered from the finest 
to the coarsest grid, at which the number of meshes is 1 at 
each MPI process. Incomplete Cholesky factorization without 
fill-ins (IC(0)) is adopted as a smoothing operator of multigrid 
process for ill-conditioned problems. The additive Schwarz 
domain decomposition (ASDD) for overlapped regions [11] is 
introduced for stabilization of the block-Jacobi-type localized 
procedure of parallel IC(0). The pGW3D-FVM code is 
parallelized by domain decomposition using MPI [2,3,4]. In 
the OpenMP/MPI hybrid parallel programming model, 
multithreading by OpenMP is applied to each partitioned 

domain. The reordering of meshes in each domain allows the 
construction of local operations without global dependency 
for achieving parallel IC operations in multigrid processes. 
Cuthill-McKee (CMK), Reverse Cuthill-McKee (RCM), and 
RCM with cyclic multicoloring (CM-RCM) [2,3,4] are 
implemented. 

C. CGA 
In [2], multigrid processes by V-cycle were applied as 

shown in Fig. 2. Multigrid operations at each level are done in 
a parallel manner, but the operations at the coarsest level 
(coarse grid solver) are executed on a single core by gathering 
the information of entire processes. The total number of 
meshes at the coarsest level is equal to the number of MPI 
processes. Moreover, overhead of parallel communication is 
significant at coarser level of the V-cycle.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.2. Original parallel multigrid method with V-cycle (restriction) [2] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Procedures of coarse grid aggregation (CGA), where information of 
each MPI process is gathered in a single MPI process for computation at 
level=m-2 

In [3], CGA was proposed, where operations for 
aggregation/disaggregation of MPI processes in Fig. 2 are 
done at a finer level. If we switch to a coarse grid solver at a 
finer level, more robust convergence and reduction of 
communication overhead are expected, even though the size 
of the coarse grid problem is larger than that of the original 
configuration. Furthermore, the coarse grid solver is multi-
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threaded by OpenMP and uses all cores on each MPI process, 
although only a single core on each node was utilized in the 
original method [2]. Figure 3 shows procedures of CGA, 
where information of each MPI process is gathered in a single 
MPI process for computation at level=m-2. Thus, the stage of 
the coarse grid solver starts earlier than that starts in the 
original case. CGA is not applied to flat MPI. 

D. CRS and ELL  
Generally, computations with sparse matrices, such as 

multigrid and MGCG, are memory-bound processes, because 
of the indirect memory accesses. Various types of storage 
formats have been proposed. The compressed row storage 
(CRS) format is the most popular and widely used because of 
its flexibility. It stores only non-zero components of sparse 
matrices, as shown in Fig. 4(a). In the Ellpack-Itpack (ELL) 
format, the number of non-zero components of each row is set 
to that of the longest non-zero entry row of the matrix, as 
shown in Fig. 4(b). This format allows one to achieve better 
performance for memory access than CRS, but introduces 
extra computations and memory requirements, since some 
rows are zero-padded, as shown in Fig. 4(b).  

 
                                                             (a)                            (b) 
 
 
 
 
 
 

Fig. 4. Formats  of sparse matrix storage. (a) Compressed row storage (CRS); 
(b) Ellpack-Itpack (ELL) 

E. Results in the Previous Works 
The performance of the developed code was evaluated on 8 

to 4,096 nodes of the Fujitsu FX10. The following three types 
of OpenMP/MPI hybrid parallel programming tablemodels 
were applied, and the results were compared with those of flat 
MPI: 

 
 Hybrid 4 4 (HB 4 4): Four OpenMP threads for each 

MPI process, four MPI processes on each node 
 Hybrid 8 2 (HB 8 2): Eight OpenMP threads for each 

MPI process, two MPI processes on each node 
 Hybrid 16 1 (HB 16 1): Sixteen OpenMP threads for 

each MPI process, a single MPI process on each node. 
 

The number of finite-volume meshes per core was 262,144 
(=643). The performance of solvers using CRS, ELL, and ELL 
with CGA (ELL-CGA) were evaluated.  Figure 5 compares 
the performances of HB 8 2 at 4,096 nodes (65,536 cores). A 
2-digit number in each label after a colon on the transverse 
axis of Fig.5 indicates the number of iterations until 
convergence. Because the coarse grid solver was performed 
on a single MPI process in ELL-CGA, the convergence 
provided by IC(0) smoothing is much more robust than that by 
localized IC(0) smoothing [3].  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Performance of MGCG solver on Fujitsu FX10 using 4,096 nodes 
(65,536 cores), total problem size: 17,179,869,184 meshes, comparison of 
CRS and ELL, effect of switching level for coarse grid solver in ELL-CGA, 
HB 8 2 
 

 
 
 
 
 
 
 
 

 

Fig. 6. Performance of MGCG solver on Fujitsu FX10 using up to 4,096 
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total 
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG, 
switching to coarse grid solver at level=7 for ELL-CGA cases 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Computation time for the coarse grid solver of MGCG solver on 
Fujitsu FX10 using 4,096 nodes (65,536 cores), total problem size: 
17,179,869,184 meshes for ELL-CGA cases 

The optimum parameter is “level=7” in this case, which has 
been determined through empirical parameter studies. 
Improvement of the performance from CRS to ELL-CGA is 
13%–35% at 4,096 nodes [3]. Figure 6 provides the results of 
weak scaling. Switching at “level=7” was applied to all ELL-
CGA cases. Although each of HB 4 4, HB 8 2 and HB 16 1 
provides excellent scalability, HB 8 2 with ELL-CGA 
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provides the best performance at 4,096 nodes. Flat MPI with 
more than 104 cores cannot achieve scalability. 

Figure 7 shows that the computation time spent for the 
coarse grid solver is getting larger for flat MPI with more 
than 104 cores. This is because the initial problem size for the 
coarse grid solver is larger, and coarse grid problems are 
solved by a single core in flat MPI cases. In contrast, the size 
of the coarse grid problem for HB 16 1 is smaller and the 
problem is solved by 16 threads in HB 16 1. Computational 
amount of coarse grid solver for each core of flat MPI is 256 
(=16 16) times as large as that of HB 16 1. 

III. OPTIMIZATION OF SERIAL AND PARALLEL 
COMMUNICATIONS  

F. Sliced ELL for Serial Communication 
In the previous work [4], ELL was introduced as a format 

of sparse matrix storage. Although structured meshes are used 
in pGW3D-FVM, utilization of ELL is not straightforward. In 
pGW3D-FVM, each of the diagonal, lower triangular, and 
upper triangular components of the coefficient matrices are 
separately stored in different arrays for IC(0) operations.  

 
(a) 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 

Fig. 8. Local data structure of pGW3D-FVM. (a) Internal/external meshes; (b) 
Upper/lower components of internal meshes 

In Fig. 8, (a) and (b) provide the local data structure of 
pGW3D-FVM. The numbering of external meshes on each 
distributed mesh starts after all internal meshes in Fig. 8(a) 
are numbered. In the structured mesh in pGW3D-FVM, the 
initial numbering is lexicographical. Therefore, each pure 
internal mesh has three lower and three upper triangular 
components. But, an internal mesh on a domain boundary 
may have up to six upper triangular components, as shown in 
Fig. 8(b). In [4], the ELL format is applied to pGW3D-FVM 
with Cuthill-McKee (CMK) reordering, because CMK does 
not change the inequality relationship of the ID of each mesh 
for the structured meshes in pGW3D-FVM. In the ELL format, 
2D-type arrays for matrices (e.g. AMAT(6,N)) are applied. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.9. Procedures for backward substitution by original ELL format [4], 

Cache is not well-utilized for loops of pure internal meshes 

 

 
 
 
 
 
 
 
 
 
 

Fig.10. Procedures for backward substitution by sliced ELL format, 
IAUnew/AUnew are stored in separate arrays for boundary meshes and pure 

internal meshes, Cache is well-utilized for loops of pure internal meshes 

Figure 9 shows the procedures of backward substitution of 
IC(0) smoothing for ELL-CGA [3].  Arrays for column ID’s 
(IAUnew(6,N)), and coefficients (AUnew(6,N)) for upper 
triangular components of IC(0) matrix are used for both of 
pure internal meshes and internal meshes on boundary 
(boundary meshes) in Fig.8(b). At each level of Cuthill-
McKee (CMK) reordering (icol in Fig.9), pure internal 
meshes and boundary meshes are calculated separately. 
Because reordering on a same level does not affect 
convergence [2,3,4], computations related to upper triangular 
components such as the backward substitution process in 
IC(0) smoothing for boundary meshes (with up to 6 upper 
components) are done first, then pure internal meshes (with up 
to 3) are calculated. This implementation of ELL provides 
25% improvement of performance compared to CRS for HB 
8 2 at 4,096 nodes, as shown in Fig.5. But, this approach is 
not necessarily efficient. IAUnew/AUnew(4,N)-(6,N) 
are not used for calculation of pure internal meshes, although 
these are stored on cache. In the present work, improved 
version of ELL (Sliced ELL) is introduced, where 
IAUnew/AUnew for pure internal meshes and boundary 
meshes are stored in separate arrays, 
IAUnew3/AUnew3(3,N) and IAUnew6/AUnew6(6,N), 
as shown in Fig.10. This idea is very similar to Sliced 
ELLPACK proposed in [12]. In the Sliced ELLPACK, a sparse 
matrix is first divided into sub-matrices (slices) consisting of S 
non-zero off-diagonal components (S=1,…, N), and each slice 
is then stored in the ELL format. Thus, the redundancy 

do icol= NHYP(lev), 1, -1
if (mod(icol,2).eq.1) then

!$omp parallel do private (ip,icel,j,SW)
do ip= 1, PEsmpTOT
do icel= SMPindex(icol-1,ip,lev)+1, SMPindex(icol,ip,lev)
SW= 0.0d0
do j= 1, 6
SW= SW + AUnew6(j,icel)*Rmg(IAUnew6(j,icel))

enddo
Rmg(icel)= Rmg(icel) - SW*DDmg(icel)

enddo
enddo
else

!$omp parallel do private (ip,icel,j,SW)
do ip= 1, PEsmpTOT
do icel= SMPindex(icol-1,ip,lev)+1, SMPindex(icol,ip,lev)
SW= 0.0d0
do j= 1, 3
SW= SW + AUnew3(j,icel)*Rmg(IAUnew3(j,icel))

enddo
Rmg(icel)= Rmg(icel) - SW*DDmg(icel)

enddo
enddo

endif
enddo

IAUnew3(3,N), AUnew3(3,N)
IAUnew6(6,N), AUnew6(6,N)

for Pure Internal Cells

for Boundary Cells

do icol= NHYP(lev), 1, -1
if (mod(icol,2).eq.1) then

!$omp parallel do private (ip,icel,j,SW)
do ip= 1, PEsmpTOT
do icel= SMPindex(icol-1,ip,lev)+1, SMPindex(icol,ip,lev)
SW= 0.0d0
do j= 1, 6
SW= SW + AUnew(j,icel)*Rmg(IAUnew(j,icel))

enddo
Rmg(icel)= Rmg(icel) - SW*DDmg(icel)

enddo
enddo
else

!$omp parallel do private (ip,icel,j,SW)
do ip= 1, PEsmpTOT
do icel= SMPindex(icol-1,ip,lev)+1, SMPindex(icol,ip,lev)
SW= 0.0d0
do j= 1, 3
SW= SW + AUnew(j,icel)*Rmg(IAUnew(j,icel))

enddo
Rmg(icel)= Rmg(icel) - SW*DDmg(icel)

enddo
enddo

endif
enddo

IAUnew (6,N), AUnew (6,N)

for Pure Internal Cells

for Boundary Cells
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inherent in the ELL format is eliminated, and cache is well-
utilized in loops for pure internal meshes. In the present work, 
we have two slices for boundary meshes and pure internal 
meshes, as shown in Fig.11. CMK reordering is also applied 
for the new format of matrix storage based on sliced ELL. The 
effect of formats of sparse matrix storage was evaluated using 
a single node (16 cores) of Fujitsu FX10 for flat MPI. The 
number of meshes per core was 262,144 (=643), and the total 
problem size was 4,193,304. Table 1 shows the results of the 
performance analyzer for Fujitsu FX10 [5]. Performance of 
multigrid process was evaluated. Performance of sliced ELL 
is 23% larger than that of original ELL due to better 
utilization of cache and effect of prefetching. Current version 
of the code is not efficient, because the code stores two series 
of arrays IAUnew3/AUnew3(3,N) and 
IAUnew6/AUnew6(6,N), where extra memory space is 
required. 

 
 
 
 
 
 
 
 
 

 
Fig.11. Idea of sliced ELL format [12], 2 slices in the present work 

TABLE 1: PERFORMANCE OF MULTIGRID PROCEDURE, MGCG SOLVER FOR 
262,144 MESHES (=643) WITH A SINGLE NODE (16 CORES) OF FUJITSU FX10 BY 

A PERFORMANCE ANALYZER [5], TOTAL PROBLEM SIZE IS 4,194,304 

G. hCGA for Parallel Communication 
CGA (Coarse Grid Aggregation) [3] provides efficiency 

and robustness of parallel multigrid method, as shown in Fig.5. 
Problem of this approach is coarse grid problem is solved on a 
single MPI process. Therefore, computational amount for 
coarse grid solver increases as number of total cores increases, 
as shown in Fig.7. This is more significant, if number of 
threads for each MPI process is smaller, such as flat MPI, HB 
4 4. In the present work, hierarchical version of CGA 
(hCGA) is introduced, as shown in Fig.12. In hCGA, number 
of MPI processes is reduced and processes are repartitioned in 
a intermediate level before the final coarse grid solver on a 
single MPI process. For example, number of MPI processes is 
reduced from 12 to 3 at level=m-3, and switched to the final 
coarse grid solver at level=m-2, as shown in Fig.12.  hCGA is 
also expected to reduce communication overhead at coarser 
levels of multigrid process. This type of approach is already 

introduced in recent works of parallel multigrid method on 
peta-scale supercomputers with more than 105 cores, such as 
IBM BlueGene/P, and Cray-XE6 systems [7,8]. Both of [7] 
and [8] adopted only flat MPI, and they dynamically reduce 
the number of MPI processes in order to ensure that overhead 
of parallel communication does not dominate the computation. 
Both of them define the minimum number of elements for 
each process below which the communication costs start to 
dominate. This critical value is defined as 2,000 in [7] and 
1,000 in [8]. In the present work, we define the switching 
level according to the optimum one for CGA. If the optimum 
switching level for CGA is levCGAopt, (=7 in the case of Fig.5), 
the switching level to reduced number of processes (levhCGA) is 
set to be levhCGA = levCGAopt -1, or =levCGAopt -2.  If we consider 
the case in Fig.5, levhCGA is set to 5 or 6. Moreover, we have to 
specify the switching level to the final coarse grid solver 
(=levhCGA-CGA). In the present work, optimum value of levhCGA 
and levhCGA-CGA are defined through empirical studies. Finally, 
number of MPI processes after repartitioning (PErep) is 
defined as 1/64 or 1/512 of the original number of MPI 
processes. PErep is also decided empirically. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12. Procedures of hierarchical CGA (hCGA), where number of MPI 
processes is reduced before the final coarse grid solver of CGA on a single 
MPI process, In this case, number of MPI processes is reduced from 12 to 3 at 
level=m-3, and switched to the final coarse grid solver at level=m-2 

IV. RESULTS  

A. Overview 
Optimization procedures for serial and parallel 

communications in parallel multigrid described in the 
previous chapter have been implemented for MGCG solver of 
pGW3D-FVM [2,3,4]. Table 2 summarizes details of each 
case. Four types of parallel programming models (flat MPI, 
HB 4 4, HB 8 2, and HB 16 1) are evaluated.  Results of C3 
and C4 are new in the present work. 

TABLE 2: SUMMARY OF DETAILS OF EACH CASE 

 Instruction 
L2 

Cache 
Miss 

SIMD 
Operation 
Ratio (%) 

GFLOPS

CRS 1.53 109 1.67 107 30.14 6.05 
Original 

ELL (Fig.9) 4.91 108 1.27 107 93.88 6.99 

Sliced ELL 
(Fig.10) 4.91 108 9.14 106 93.88 8.56 

 Format of Matrix Storage CGA/hCGA 
C0 [3] CRS NO CGA (Fig.2) C1 [4] ELL (Fig.9) C2 [4] CGA (Fig.3) C3 Sliced ELL (Fig.10) C4 hCGA (Fig.12) 

Level=1

Level=2

Level=m 3

Level=m 3

Fine

Coarse

Level=m 2

Coarse grid solver on a
single MPI process (multi
threaded, further multigrid)

Pure Internal 
Meshes
AUnew3(3,N)

Boundary Meshes
AUnew6(6,N)
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B. Weak Scaling 
The performance of weak scaling was evaluated by using 8 

to 4,096 nodes (65,536 cores) of the Fujitsu FX10. The 
number of finite-volume meshes per core was 262,144 (=643); 
therefore, the maximum total problem size was 
17,179,869,184 meshes.  

Figure 13 compares four types of parallel programming 
models for C3. Switching level to the coarse grid solver in 
CGA is set to 7 for all of HB 4 4, HB 8 2 and HB 16 1, 
which provides the best performance at 4,096 nodes for all 
cases. Each of HB 4 4, HB 8 2 and HB 16 1 provides 
excellent scalability up to 4,096 nodes, although HB 8 2 is 
slightly faster than others. Flat MPI is much slower than other 
hybrid parallel programming models with more than 104 cores 
because of overhead of coarse grid solver. Figure 14 provides 
the performance of C0-C3 for HB 8 2. Switching level to the 
coarse grid solver in CGA (C2 and C3) is set to 7. 
Improvement of performance by sliced ELL over ELL 
(improvement from C2 to C3) at 4,096 nodes is 25%-31%, 
and 28% for HB 8 2. Effect of sliced ELL is significant. 

Figure 15 compares best results of C3 and C4 at 4,096 
nodes. Effect of hCGA is not so significant except for flat 
MPI where C4 is 1.61 times faster than C3. C4 is slightly 
faster for HB 4 4, while C4 is slower than C3 for HB 8 2 and 
HB 16 1 due to the overhead of repartitioning for hCGA. 2-
digit number in each label after a colon on the transverse axis 
of Fig.15 indicates the number of iterations until convergence.  
This means that hCGA can make changes on convergence. 
Convergence of flat MPI and HB 4 4 is improved by hCGA.  

Table 3 summarizes comparison between C3 (CGA) and 
C4 (hCGA)  for flat MPI and HB 4 4.  Optimum number of 
MPI processes after repartitioning (PErep) for each case is 128 
processes (8 nodes) for flat MPI, and 256 processes (64 
nodes) for HB 4 4, respectively. Optimum level for switching 
to reduced number of MPI processes  for hCGA (levhCGAopt) is 
6 for both of flat MPI and HB 4 4, while levCGAopt for flat MPI 
is 7, and that of HB 4 4 is 8. Critical mesh number per MPI 
process for repartitioning is 1,000-2,000 in the existing works 
[7,8], but this value for the optimum case of flat MPI is 8 in 
the present work, where number of meshes in each MPI 
process is equal to 8 (=23) at lev=6 as shown in Table 3. 
Overhead for coarse grid solver was significant for flat MPI 
with more than 104 cores, as shown in Fig.7. At 4,096 nodes, 
intermediate level of this coarse grid problem was solved by 8 
nodes (128 MPI processes (=PErep)) for C4, instead of by a 
single core for C2 and C3.  

Figure 16 compares best results of C3 and C4 for four 
parallel programming models. All of them except flat MPI 
(C3) are scalable up to 4,096 nodes, although HB 8 2 (C3) is 
slightly faster than others. Finally, Fig.17 provides the 
performance of C3 and C4 for the four parallel programming 
models at 64, 512, and 4,096 nodes. Generally speaking, C4 
with hCGA shows significant improvement of performance of 
flat MPI, as number of nodes increases.   

 

TABLE 3: COMPARISON OF C3 (CGA) AND C4(HCGA) AT 4,096 NODES, FOR 
FLAT MPI AND HB 4 4 

 
 

 
 
 
 
 
 
 
 
 

 

Fig. 13. Performance of MGCG solver on Fujitsu FX10 using up to 4,096 
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total 
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG, 
best results of sliced ELL with CGA (C3), switching to coarse grid solver at 
level=7 for CGA 

 
 
 
 
 
 

 
 

 
 

Fig. 14. Performance of MGCG solver on Fujitsu FX10 using up to 4,096 
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total 
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG, 
HB 8 2, C3 (sliced ELL) is 28% faster than C2 (ELL) at 4,096 nodes  

 
 
 
 
 

 
 

 
 
 

 

Fig. 15. Performance of MGCG solver on Fujitsu FX10 using 4,096 nodes 
(65,536 cores), total problem size: 17,179,869,184 meshes, comparison of C3 
and C4, effect of hCGA 

  levCGAopt
levhCGAopt

levhCGA-CGAopt 
(PErep) 

Iter’s sec.

Flat MPI
C3 7 - 64 13.2

C4 6 3  (128 proc’s 
8 nodes) 61 8.22

HB 4 4
C3 8 - 59 8.08

C4 6 2 (256 proc’s, 
64 nodes) 56 7.97
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Fig. 16. Performance of MGCG solver on Fujitsu FX10 using up to 4,096 
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total 
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG, 
best results of C3 and C4, and flat MPI (C3) 

 
 
 
 
 
 

 
 

 
 

Fig. 17. Performance of MGCG solver on Fujitsu FX10 using up to 4,096 
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total 
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG   

C. Strong Scaling 
Finally, the performance of strong scaling was evaluated 

for a fixed size of problem with 268,435,456 meshes 
(=1024 512 512) using 8 to 4,096 nodes of Fujitsu FX10. At 
4,096 nodes, the problem size per each core is only 4,096 
meshes (=163). Figure 18 shows the performance of the 
MGCG solver, and compares C3 (sliced ELL with CGA) and 
the best case of C4 (sliced ELL with hCGA) for each parallel 
programming model. The performance of flat MPI (C3) with 
8 nodes (128 cores) is 100%, and the parallel performance is 
50%–67% up to 512 nodes (8,192 cores). At 4,096 nodes, flat 
MPI (C4) provides the best performance (14.6%). 
Improvement of performance of flat MPI by hCGA (from C3 
to C4) is significant, and the ratio of performance is 6.27 
times at 4096 nodes. Improvement of performance by sliced 
ELL over original ELL (from C2 to C3) at 4,096 nodes is 
21.8% (flat MPI), 14.2% (HB 4 4), 15.3% (HB 8 2), and 
9.1% (HB 16 1), respectively. 

D. Improvement of Parallel Communication by hCGA 
In this section, effect of hCGA on improvement of parallel 

communication is evaluated for both of weak and strong cases. 
Figure 19 compares overhead for parallel communications per 
a single CG iteration for weak scaling computation at 4,096 
nodes. Overhead for parallel communication includes, 
MPI_Allreduce for dot products, MPI_Isend/Irecv/Waitall for 
communications at boundaries, and memory copies at 

boundaries. Generally speaking, hCGA improve the parallel 
communications of MGCG solver. Effect of improvement is 
15% for flat MPI, and less than 1% for HB 16 1. Finally, 
Fig.20 compares parallel communication overhead for strong 
scaling computing at 4,096 nodes. Effect of improvement by 
hCGA is more than that for weak scaling cases, where effect 
of improvement is 35% for flat MPI, and 8% for HB 16 1. 

 
 
 
 
 
 
 
 

 
 
 

Fig. 18. Performance of MGCG solver on Fujitsu FX10 using up to 4,096 
nodes (65,536 cores), strong scaling: 268,435,456 meshes (=1024 512 512), 
parallel performance based on the performance of flat MPI (C3) with 8 nodes 
(128 cores) 

 
 
 
 
 
 
 
 

 
 

Fig. 19. Effect of hCGA on overhead of parallel communications in MGCG 
solver, overhead for parallel communications per a single CG iteration, total 
problem size: 17,179,869,184 meshes at 4,096 nodes 

 
 
 
 
 
 
 
 
 

 

Fig. 20. Effect of hCGA on overhead of parallel communications in MGCG 
solver, overhead for parallel communications per a single CG iteration, total 
problem size: 268,435,456 meshes at 4,096 nodes 

V. SUMMARY AND FUTURE WORK 
The parallel multigrid and MGCG include both of serial 

and parallel communication processes which are generally 
expensive. In the present work, new format for sparse matrix 
storage based on sliced ELL is proposed for optimization of 
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serial communication on memories, and hierarchical coarse 
grid aggregation (hCGA) is introduced for optimization of 
parallel communication by message passing. The proposed 
methods are implemented for pGW3D-FVM, and the 
robustness and performance of the code was evaluated using 
up to 4,096 nodes (65,536 cores) of the Fujistu FX10 system. 
The parallel MGCG solver using the sliced ELL format 
provided performance improvement in both weak scaling 
(25%–31%) and strong scaling (9%–22%) compared to the 
code using the original ELL format [4]. Moreover, hCGA 
provided excellent performance improvement in both weak 
scaling (1.61 times) and strong scaling (6.27 times) for flat 
MPI parallel programming model. hCGA was also effective 
for improvement of parallel communications. Effect of sliced 
ELL on serial communication was significant, while that of 
hCGA on parallel communication was not so impressive 
except for flat MPI cases. Because hCGA proved to be very 
effective for reducing overhead of coarse grid solver, that will 
also provide more significant effect on hybrid parallel 
programming models with larger number of nodes. As was 
mentioned in Chapter II, computational amount of coarse grid 
solver for each core of flat MPI is 256 (=16 16) times as large 
as that of HB 16 1. Therefore, hCGA is expected to be really 
effective for HB 16 1 with more than 2.50 105 nodes 
(4.00 106 cores) of Fujitsu FX10, where the peak performance 
is more than 60 PFLOPS.  

In the present work, we focused on optimization of 
communications with neighboring MPI processes at process 
boundaries by MPI_Isend/Irecv/Waitall as parallel 
communication, but overhead by collective communication 
(e.g. MPI_Allreduce) is more significant with more than 
2.50 105 nodes. Figure 21 shows overhead by a single 
MPI_Allreduce call for sending a single scalar variable for dot 
product in the weak scaling case of MGCG solver, with up to 
4,096 nodes of Fujitsu FX10. In order to reduce overhead by 
this type collective communication, communication 
avoiding/hiding type of algorithm combined with MPI 
functions for non-blocking collective communications 
supported in MPI 3.0 specification [13]  is also effective. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 21. Overhead by MPI_Allreduce for dot product (a single scalar variable) 
of MGCG solver on Fujitsu FX10 using up to 4,096 nodes (65,536 cores), 
weak scaling: 262,144 (=643) meshes/core, max. total problem size: 
17,179,869,184 meshes, best results of C3 and C4 

 
More efficient storage of sliced ELL arrays and 

optimization of hCGA function are the critical issues for 

future work. Especially, improvement of communication 
procedures for repartitioning of MPI processes is important. 
CGA and hCGA include a various types of parameters, and 
the optimum values of those were derived through empirical 
studies in the present work. Development of methods for 
automatic selection of these parameters [14] is also an 
interesting technical issue for future work. Optimum 
parameters can be estimated based on calculation of 
computational amounts, performance models, parameters of 
hardware, and some measured performance of the system. But 
it is not so straightforward. Because some of these parameters 
also make effects on convergence, construction of such 
methods for automatic selection is really challenging. 

ACKNOWLEDGMENT 
This work is supported by Core Research for Evolutional 

Science and Technology (CREST), the Japan Science and 
Technology Agency (JST), Japan. The computational 
resource of Fujitsu FX10 was awarded by the “Large-scale 
HPC Challenge” Project, Information Technology Center, the 
University of Tokyo. 

REFERENCES 
[1] HPCG: High Performance Conjugate Gradients: 

https://software.sandia.gov/hpcg/ 
[2] Nakajima, K., New strategy for coarse grid solvers in parallel multigrid 

methods using OpenMP/MPI hybrid programming models”, ACM 
Proceedings of the 2012 International Workshop on Programming 
Models & Applications for Multi/Manycores (2012) 

[3] Nakajima, K., OpenMP/MPI Hybrid Parallel Multigrid Method on 
Fujitsu FX10 Supercomputer System, IEEE Proceedings of 2012 
International Conference on Cluster Computing Workshops, IEEE 
Digital Library: 10.1109/ClusterW.2012.35 (2012) 199-206 

[4] Nakajima, K., Large-scale Simulations of 3D Groundwater Flow using 
Parallel Geometric Multigrid Method, Procedia Computer Science 18 
(2013) 1265-1274 

[5] Information Technology Center, The University of Tokyo: 
http://www.cc.u-tokyo.ac.jp/ 

[6] Baker, A., T. Gamblin, M. Schultz, U. Yang, Challenge of Scaling 
Algebraic Multigrid across Modern Multicore Architectures, 
Proceedings of the 2011 IEEE International Parallel & Distributed 
Processing Symposium (IPDPS’11) (2011) 275-286 

[7] Lin, P.T., Improving multigrid performance for unstructured mesh 
drift-diffusion simulations on 147,000 cores, International Journal for 
Numerical Methods in Engineering 91 (2012) 971-989 

[8] Sundar, H., G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler, 
Parallel Geometric-Algebraic Multigrid on Unstructured Forests of 
Octrees, ACM/IEEE Proceedings of the 2012 International Conference 
for High Performance Computing, Networking, Storage and Analysis 
(SC12) (2012) 

[9] Fujitsu: http://www.fujitsu.com/ 
[10] Deutsch, C.V. and A.G. Journel, GSLIB Geostatistical Software 

Library and User’s Guide, Second Edition. Oxford University Press 
(1998)  

[11] Smith, B., P. Bj rstad, and W. Gropp, Domain Decomposition, 
Parallel Multilevel Methods for Elliptic Partial Differential Equations, 
Cambridge Press (1996) 

[12] Monakov, A., A. Lokhmotov, and A. Avetisyan, Automatically tuning 
sparse matrix-vector multiplication for GPU architectures, Lecture 
Notes in Computer Science 5952 (2010) 112-125 

[13] Ghysels, P. and W. Vanroose, Hiding global synchronization latency in 
the preconditioned Conjugate Gradient algorithm, Parallel Computing 
40-7 (2014) 224-238 

[14] Nakajima, K., Automatic Tuning of Parallel Multigrid Solvers using 
OpenMP/MPI Hybrid Parallel Programming Models, Lecture Notes in 
Computer Science 7851 (2013) 435-450 

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

100 1000 10000 100000

se
c.

/M
PI

_A
llr

ed
uc

e

MPI Process #

Flat MPI
HB  4x4
HB  8x2
HB 16x1

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 22 -




