
http://www.icpads.org/

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 14 -

Optimization of Serial and Parallel Communications
for Parallel Geometric Multigrid Method

Kengo Nakajima
Information Technology Center, The University of Tokyo

2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, Japan
nakajima@cc.u-tokyo.ac.jp

Abstract— The parallel multigrid method is expected to play

an important role in large-scale scientific computing on post-
peta/exa-scale supercomputer systems, and it also includes serial
and parallel communication processes which are generally
expensive. In the present work, new format for sparse matrix
storage based on sliced Ellpack-Itpack (ELL) format is proposed
for optimization of serial communication in data transfer
through memories, and hierarchical coarse grid aggregation
(hCGA) is introduced for optimization of parallel
communication by message passing. The proposed methods are
implemented for pGW3D-FVM, a parallel code for 3D
groundwater flow simulations using the multigrid method, and
the robustness and performance of the code was evaluated on up
to 4,096 nodes (65,536 cores) of the Fujistu FX10 supercomputer
system at the University of Tokyo. The parallel multigrid solver
using the sliced ELL format provided performance improvement
in both weak scaling (25%–31%) and strong scaling (9%–22%)
compared to the code using the original ELL format. Moreover,
hCGA provided excellent performance improvement in both
weak scaling (1.61 times) and strong scaling (6.27 times) for flat
MPI parallel programming model.

Keywords—parallel computing; iterative solvers; multigrid;
communication; matrix storage format; multicore

I. INTRODUCTION
A multigrid is a scalable method for solving linear

equations and preconditioning Krylov iterative linear solvers,
and is especially suitable for large-scale problems. The
parallel multigrid method is expected to be one of the
powerful tools on post-peta/exa-scale systems. Recently,
HPCG (High Performance Conjugate Gradients) [1] was
proposed as a new benchmark for evaluation of the practical
performance of supercomputer systems. HPCG solves sparse
matrices derived from finite-element application using
conjugate gradient linear solver (CG) preconditioned with
multigrid method.

In previous works by the author [2,3,4], OpenMP/MPI
hybrid parallel programming models were implemented for
pGW3D-FVM, a 3D finite-volume simulation code for
groundwater flow problems through heterogeneous porous
media, by using parallel conjugate gradient (CG) solver with
multigrid preconditioner (MGCG). The performance and the
robustness of the developed code were evaluated on multicore
clusters, such as the T2K Open Supercomputer (T2K/Tokyo)
and the Fujitsu FX10 System (Oakleaf-FX) at the University
of Tokyo [5], by using up to 4,096 nodes (65,536 cores) for
both weak and strong scaling computations.

It is well-known that convergence of the solver at the
coarsest level of the multigrid cycle (coarse grid solver)
strongly affects convergence of the entire process of multigrid
[2,6,7,8]. The coarse grid aggregation (CGA) proposed in [3]
improves the performance and the robustness of multigrid
procedures with large numbers of MPI processes. In [4], the
effect of a format of sparse matrix storage on the performance
of MGCG was evaluated. The Ellpack-Itpack (ELL) format
was applied to pGW3D-FVM, and it provided excellent
improvement of memory access throughput, and the MGCG
solver using the ELL format with CGA showed excellent
scalable performance and robustness. The performance
improvement from the original solver with the compressed
row storage (CRS) format in [3] to the new one with ELL-
CGA at 4,096 nodes of the Fujitsu FX10 System (Oakleaf-
FX) was 13%–35% for weak scaling, and 40%–70% for
strong scaling.

The parallel multigrid method and MGCG include both of
serial and parallel communication processes which are
generally expensive. The serial communication is the data
transfers through memory hierarchies of each processor.
Because MGCG solver with sparse coefficient matrices is a
memory-bound process, serial communication is a serious
problem. In the present work, further modification is
introduced into the ELL format of the coefficient matrices.
The parallel communication is by message passing between
computing nodes through the network using MPI. Hierarchical
coarse grid aggregation (hCGA) is introduced for optimization
of the parallel communication in the present work.

The rest of this paper is organized as follows. In Section II,
an overview of the target hardware and application is provided,
and results of the previous works are briefly overviewed. In
Section III, we give a summary of the method for optimization
of serial and parallel communications. Finally, Section IV
provides the results of computations, and final remarks are
offered in Sections V.

II. HARDWARE ENVIRONMENT AND TARGET APPLICATION

A. Hardware Environment
The Fujitsu FX10 system at the University of Tokyo

(Oakleaf-FX) [9] is Fujitsu’s PRIMEHPC FX10 massively
parallel supercomputer with a peak performance of 1.13
PFLOPS. The Oakleaf-FX system consists of 4,800
computing nodes of SPARC64™ IXfx with 16 cores (1.848
GHz) [9]. The entire system consists of 76,800 cores and 154

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 15 -

TB memory. Each core has a 64 KB L1 instruction/data cache.
A 12 MB L2 cache is shared by 16 cores on each node. On the
SPARC64™ IXfx, each of the 16 cores accesses memory in a
uniform manner. Nodes are connected via a 6-dimensional
mesh/torus interconnect, called Tofu. Although users can
specify the topology of the network on Fujitsu FX10, this
capability was not used in the present work.

B. pGW3D-FVM with MGCG Solver
pGW3D-FVM, a parallel simulation code based on the

finite-volume method (FVM), solves groundwater flow
problems through saturated heterogeneous porous media (Fig.
1). The problem is described by the following Poisson
equation and boundary condition (1):

 (1)

where denotes the potential of the water head, (x,y,z)
describes the water conductivity, and q is the value of the
volumetric flux of each finite-volume mesh and is set to a
uniform value (=1.0) in this work.
(a) (b)

Fig.1 Example of groundwater flow through heterogeneous porous media. (a)
Distribution of water conductivity; (b) Streamlines

A heterogeneous distribution of water conductivity in each
mesh is calculated by a sequential Gauss algorithm, which is
widely used in the area of geostatistics [10]. The minimum
and maximum values of water conductivity are 10-5 and 105,
respectively, with an average value of 1.0. Each mesh is a
cube, and distribution of the meshes is structured as finite-
difference-type voxels. In the present work, an entire model
consists of clusters of small models with 1283 meshes with
same pattern [2,3,4]. The conjugate gradient (CG) solver with
multigrid preconditioner (MGCG) [2,3,4] was applied for
solving Poisson’s equations with symmetric positive definite
(SPD) coefficient matrices derived by pGW3D-FVM. A very
simple geometric multigrid with a V-cycle algorithm is applied,
where 8 children form 1 parent mesh in an isotropic manner
for structured finite-difference-type voxels. The level of the
finest grid is set to 1, and the level is numbered from the finest
to the coarsest grid, at which the number of meshes is 1 at
each MPI process. Incomplete Cholesky factorization without
fill-ins (IC(0)) is adopted as a smoothing operator of multigrid
process for ill-conditioned problems. The additive Schwarz
domain decomposition (ASDD) for overlapped regions [11] is
introduced for stabilization of the block-Jacobi-type localized
procedure of parallel IC(0). The pGW3D-FVM code is
parallelized by domain decomposition using MPI [2,3,4]. In
the OpenMP/MPI hybrid parallel programming model,
multithreading by OpenMP is applied to each partitioned

domain. The reordering of meshes in each domain allows the
construction of local operations without global dependency
for achieving parallel IC operations in multigrid processes.
Cuthill-McKee (CMK), Reverse Cuthill-McKee (RCM), and
RCM with cyclic multicoloring (CM-RCM) [2,3,4] are
implemented.

C. CGA
In [2], multigrid processes by V-cycle were applied as

shown in Fig. 2. Multigrid operations at each level are done in
a parallel manner, but the operations at the coarsest level
(coarse grid solver) are executed on a single core by gathering
the information of entire processes. The total number of
meshes at the coarsest level is equal to the number of MPI
processes. Moreover, overhead of parallel communication is
significant at coarser level of the V-cycle.

Fig.2. Original parallel multigrid method with V-cycle (restriction) [2]

Fig.3. Procedures of coarse grid aggregation (CGA), where information of
each MPI process is gathered in a single MPI process for computation at
level=m-2

In [3], CGA was proposed, where operations for
aggregation/disaggregation of MPI processes in Fig. 2 are
done at a finer level. If we switch to a coarse grid solver at a
finer level, more robust convergence and reduction of
communication overhead are expected, even though the size
of the coarse grid problem is larger than that of the original
configuration. Furthermore, the coarse grid solver is multi-

max0,,, zzatqzyx

Level=1

Level=2

Level=m-3

Level=m-2

Level=m-1

Level=m
Mesh # for
each MPI= 1

Fine

Coarse Coarse grid solver on a single
core (further multigrid)

Level=1

Level=2

Level=m-3

Fine

Coarse

Coarse grid solver on a
single MPI process (multi-
threaded, further
multigrid)

Level=m-2

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 16 -

threaded by OpenMP and uses all cores on each MPI process,
although only a single core on each node was utilized in the
original method [2]. Figure 3 shows procedures of CGA,
where information of each MPI process is gathered in a single
MPI process for computation at level=m-2. Thus, the stage of
the coarse grid solver starts earlier than that starts in the
original case. CGA is not applied to flat MPI.

D. CRS and ELL
Generally, computations with sparse matrices, such as

multigrid and MGCG, are memory-bound processes, because
of the indirect memory accesses. Various types of storage
formats have been proposed. The compressed row storage
(CRS) format is the most popular and widely used because of
its flexibility. It stores only non-zero components of sparse
matrices, as shown in Fig. 4(a). In the Ellpack-Itpack (ELL)
format, the number of non-zero components of each row is set
to that of the longest non-zero entry row of the matrix, as
shown in Fig. 4(b). This format allows one to achieve better
performance for memory access than CRS, but introduces
extra computations and memory requirements, since some
rows are zero-padded, as shown in Fig. 4(b).

 (a) (b)

Fig. 4. Formats of sparse matrix storage. (a) Compressed row storage (CRS);
(b) Ellpack-Itpack (ELL)

E. Results in the Previous Works
The performance of the developed code was evaluated on 8

to 4,096 nodes of the Fujitsu FX10. The following three types
of OpenMP/MPI hybrid parallel programming tablemodels
were applied, and the results were compared with those of flat
MPI:

 Hybrid 4 4 (HB 4 4): Four OpenMP threads for each

MPI process, four MPI processes on each node
 Hybrid 8 2 (HB 8 2): Eight OpenMP threads for each

MPI process, two MPI processes on each node
 Hybrid 16 1 (HB 16 1): Sixteen OpenMP threads for

each MPI process, a single MPI process on each node.

The number of finite-volume meshes per core was 262,144
(=643). The performance of solvers using CRS, ELL, and ELL
with CGA (ELL-CGA) were evaluated. Figure 5 compares
the performances of HB 8 2 at 4,096 nodes (65,536 cores). A
2-digit number in each label after a colon on the transverse
axis of Fig.5 indicates the number of iterations until
convergence. Because the coarse grid solver was performed
on a single MPI process in ELL-CGA, the convergence
provided by IC(0) smoothing is much more robust than that by
localized IC(0) smoothing [3].

Fig. 5. Performance of MGCG solver on Fujitsu FX10 using 4,096 nodes
(65,536 cores), total problem size: 17,179,869,184 meshes, comparison of
CRS and ELL, effect of switching level for coarse grid solver in ELL-CGA,
HB 8 2

Fig. 6. Performance of MGCG solver on Fujitsu FX10 using up to 4,096
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG,
switching to coarse grid solver at level=7 for ELL-CGA cases

Fig. 7. Computation time for the coarse grid solver of MGCG solver on
Fujitsu FX10 using 4,096 nodes (65,536 cores), total problem size:
17,179,869,184 meshes for ELL-CGA cases

The optimum parameter is “level=7” in this case, which has
been determined through empirical parameter studies.
Improvement of the performance from CRS to ELL-CGA is
13%–35% at 4,096 nodes [3]. Figure 6 provides the results of
weak scaling. Switching at “level=7” was applied to all ELL-
CGA cases. Although each of HB 4 4, HB 8 2 and HB 16 1
provides excellent scalability, HB 8 2 with ELL-CGA

50001
04730
00314
00521
00031 1 3

1 2 5
4 1 3
3 7 4
1 5

1 3
1 2 5
4 1 3
3 7 4
1 5

0

0

0.00

1.00

2.00

3.00

4.00

1024 2048 4096 8192 16384 32768 49152 65536

se
c.

CORE#

Flat MPI HB 4x4
HB 8x2 HB 16x1

5.0

7.5

10.0

12.5

15.0

100 1000 10000 100000

se
c.

CORE#

Flat MPI:ELL
HB 4x4:ELL-CGA
HB 8x2:ELL-CGA
HB 16x1:ELL-CGA

0.0

5.0

10.0

15.0

ELL-CGA,
lev=6: 51

ELL-CGA,
lev=7: 55

ELL-CGA,
lev=8: 60

ELL: 65,
(NO CGA)

CRS: 66,
(NO CGA)

se
c.

Rest
Coarse Grid Solver
MPI_Allgather
MPI_Isend/Irecv/Allreduce

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 17 -

provides the best performance at 4,096 nodes. Flat MPI with
more than 104 cores cannot achieve scalability.

Figure 7 shows that the computation time spent for the
coarse grid solver is getting larger for flat MPI with more
than 104 cores. This is because the initial problem size for the
coarse grid solver is larger, and coarse grid problems are
solved by a single core in flat MPI cases. In contrast, the size
of the coarse grid problem for HB 16 1 is smaller and the
problem is solved by 16 threads in HB 16 1. Computational
amount of coarse grid solver for each core of flat MPI is 256
(=16 16) times as large as that of HB 16 1.

III. OPTIMIZATION OF SERIAL AND PARALLEL
COMMUNICATIONS

F. Sliced ELL for Serial Communication
In the previous work [4], ELL was introduced as a format

of sparse matrix storage. Although structured meshes are used
in pGW3D-FVM, utilization of ELL is not straightforward. In
pGW3D-FVM, each of the diagonal, lower triangular, and
upper triangular components of the coefficient matrices are
separately stored in different arrays for IC(0) operations.

(a)

(b)

Fig. 8. Local data structure of pGW3D-FVM. (a) Internal/external meshes; (b)
Upper/lower components of internal meshes

In Fig. 8, (a) and (b) provide the local data structure of
pGW3D-FVM. The numbering of external meshes on each
distributed mesh starts after all internal meshes in Fig. 8(a)
are numbered. In the structured mesh in pGW3D-FVM, the
initial numbering is lexicographical. Therefore, each pure
internal mesh has three lower and three upper triangular
components. But, an internal mesh on a domain boundary
may have up to six upper triangular components, as shown in
Fig. 8(b). In [4], the ELL format is applied to pGW3D-FVM
with Cuthill-McKee (CMK) reordering, because CMK does
not change the inequality relationship of the ID of each mesh
for the structured meshes in pGW3D-FVM. In the ELL format,
2D-type arrays for matrices (e.g. AMAT(6,N)) are applied.

Fig.9. Procedures for backward substitution by original ELL format [4],

Cache is not well-utilized for loops of pure internal meshes

Fig.10. Procedures for backward substitution by sliced ELL format,
IAUnew/AUnew are stored in separate arrays for boundary meshes and pure

internal meshes, Cache is well-utilized for loops of pure internal meshes

Figure 9 shows the procedures of backward substitution of
IC(0) smoothing for ELL-CGA [3]. Arrays for column ID’s
(IAUnew(6,N)), and coefficients (AUnew(6,N)) for upper
triangular components of IC(0) matrix are used for both of
pure internal meshes and internal meshes on boundary
(boundary meshes) in Fig.8(b). At each level of Cuthill-
McKee (CMK) reordering (icol in Fig.9), pure internal
meshes and boundary meshes are calculated separately.
Because reordering on a same level does not affect
convergence [2,3,4], computations related to upper triangular
components such as the backward substitution process in
IC(0) smoothing for boundary meshes (with up to 6 upper
components) are done first, then pure internal meshes (with up
to 3) are calculated. This implementation of ELL provides
25% improvement of performance compared to CRS for HB
8 2 at 4,096 nodes, as shown in Fig.5. But, this approach is
not necessarily efficient. IAUnew/AUnew(4,N)-(6,N)
are not used for calculation of pure internal meshes, although
these are stored on cache. In the present work, improved
version of ELL (Sliced ELL) is introduced, where
IAUnew/AUnew for pure internal meshes and boundary
meshes are stored in separate arrays,
IAUnew3/AUnew3(3,N) and IAUnew6/AUnew6(6,N),
as shown in Fig.10. This idea is very similar to Sliced
ELLPACK proposed in [12]. In the Sliced ELLPACK, a sparse
matrix is first divided into sub-matrices (slices) consisting of S
non-zero off-diagonal components (S=1,…, N), and each slice
is then stored in the ELL format. Thus, the redundancy

do icol= NHYP(lev), 1, -1
if (mod(icol,2).eq.1) then

!$omp parallel do private (ip,icel,j,SW)
do ip= 1, PEsmpTOT
do icel= SMPindex(icol-1,ip,lev)+1, SMPindex(icol,ip,lev)
SW= 0.0d0
do j= 1, 6
SW= SW + AUnew6(j,icel)*Rmg(IAUnew6(j,icel))

enddo
Rmg(icel)= Rmg(icel) - SW*DDmg(icel)

enddo
enddo
else

!$omp parallel do private (ip,icel,j,SW)
do ip= 1, PEsmpTOT
do icel= SMPindex(icol-1,ip,lev)+1, SMPindex(icol,ip,lev)
SW= 0.0d0
do j= 1, 3
SW= SW + AUnew3(j,icel)*Rmg(IAUnew3(j,icel))

enddo
Rmg(icel)= Rmg(icel) - SW*DDmg(icel)

enddo
enddo

endif
enddo

IAUnew3(3,N), AUnew3(3,N)
IAUnew6(6,N), AUnew6(6,N)

for Pure Internal Cells

for Boundary Cells

do icol= NHYP(lev), 1, -1
if (mod(icol,2).eq.1) then

!$omp parallel do private (ip,icel,j,SW)
do ip= 1, PEsmpTOT
do icel= SMPindex(icol-1,ip,lev)+1, SMPindex(icol,ip,lev)
SW= 0.0d0
do j= 1, 6
SW= SW + AUnew(j,icel)*Rmg(IAUnew(j,icel))

enddo
Rmg(icel)= Rmg(icel) - SW*DDmg(icel)

enddo
enddo
else

!$omp parallel do private (ip,icel,j,SW)
do ip= 1, PEsmpTOT
do icel= SMPindex(icol-1,ip,lev)+1, SMPindex(icol,ip,lev)
SW= 0.0d0
do j= 1, 3
SW= SW + AUnew(j,icel)*Rmg(IAUnew(j,icel))

enddo
Rmg(icel)= Rmg(icel) - SW*DDmg(icel)

enddo
enddo

endif
enddo

IAUnew (6,N), AUnew (6,N)

for Pure Internal Cells

for Boundary Cells

x

y
z

Pure Internal
Meshes

Internal Meshes
on Boundary

Internal
(lower)

Internal
(upper)

External
(upper)

External
Meshes
Internal Meshes
on Boundary

Pure Internal
Meshes

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 18 -

inherent in the ELL format is eliminated, and cache is well-
utilized in loops for pure internal meshes. In the present work,
we have two slices for boundary meshes and pure internal
meshes, as shown in Fig.11. CMK reordering is also applied
for the new format of matrix storage based on sliced ELL. The
effect of formats of sparse matrix storage was evaluated using
a single node (16 cores) of Fujitsu FX10 for flat MPI. The
number of meshes per core was 262,144 (=643), and the total
problem size was 4,193,304. Table 1 shows the results of the
performance analyzer for Fujitsu FX10 [5]. Performance of
multigrid process was evaluated. Performance of sliced ELL
is 23% larger than that of original ELL due to better
utilization of cache and effect of prefetching. Current version
of the code is not efficient, because the code stores two series
of arrays IAUnew3/AUnew3(3,N) and
IAUnew6/AUnew6(6,N), where extra memory space is
required.

Fig.11. Idea of sliced ELL format [12], 2 slices in the present work

TABLE 1: PERFORMANCE OF MULTIGRID PROCEDURE, MGCG SOLVER FOR
262,144 MESHES (=643) WITH A SINGLE NODE (16 CORES) OF FUJITSU FX10 BY

A PERFORMANCE ANALYZER [5], TOTAL PROBLEM SIZE IS 4,194,304

G. hCGA for Parallel Communication
CGA (Coarse Grid Aggregation) [3] provides efficiency

and robustness of parallel multigrid method, as shown in Fig.5.
Problem of this approach is coarse grid problem is solved on a
single MPI process. Therefore, computational amount for
coarse grid solver increases as number of total cores increases,
as shown in Fig.7. This is more significant, if number of
threads for each MPI process is smaller, such as flat MPI, HB
4 4. In the present work, hierarchical version of CGA
(hCGA) is introduced, as shown in Fig.12. In hCGA, number
of MPI processes is reduced and processes are repartitioned in
a intermediate level before the final coarse grid solver on a
single MPI process. For example, number of MPI processes is
reduced from 12 to 3 at level=m-3, and switched to the final
coarse grid solver at level=m-2, as shown in Fig.12. hCGA is
also expected to reduce communication overhead at coarser
levels of multigrid process. This type of approach is already

introduced in recent works of parallel multigrid method on
peta-scale supercomputers with more than 105 cores, such as
IBM BlueGene/P, and Cray-XE6 systems [7,8]. Both of [7]
and [8] adopted only flat MPI, and they dynamically reduce
the number of MPI processes in order to ensure that overhead
of parallel communication does not dominate the computation.
Both of them define the minimum number of elements for
each process below which the communication costs start to
dominate. This critical value is defined as 2,000 in [7] and
1,000 in [8]. In the present work, we define the switching
level according to the optimum one for CGA. If the optimum
switching level for CGA is levCGAopt, (=7 in the case of Fig.5),
the switching level to reduced number of processes (levhCGA) is
set to be levhCGA = levCGAopt -1, or =levCGAopt -2. If we consider
the case in Fig.5, levhCGA is set to 5 or 6. Moreover, we have to
specify the switching level to the final coarse grid solver
(=levhCGA-CGA). In the present work, optimum value of levhCGA
and levhCGA-CGA are defined through empirical studies. Finally,
number of MPI processes after repartitioning (PErep) is
defined as 1/64 or 1/512 of the original number of MPI
processes. PErep is also decided empirically.

Fig.12. Procedures of hierarchical CGA (hCGA), where number of MPI
processes is reduced before the final coarse grid solver of CGA on a single
MPI process, In this case, number of MPI processes is reduced from 12 to 3 at
level=m-3, and switched to the final coarse grid solver at level=m-2

IV. RESULTS

A. Overview
Optimization procedures for serial and parallel

communications in parallel multigrid described in the
previous chapter have been implemented for MGCG solver of
pGW3D-FVM [2,3,4]. Table 2 summarizes details of each
case. Four types of parallel programming models (flat MPI,
HB 4 4, HB 8 2, and HB 16 1) are evaluated. Results of C3
and C4 are new in the present work.

TABLE 2: SUMMARY OF DETAILS OF EACH CASE

 Instruction
L2

Cache
Miss

SIMD
Operation
Ratio (%)

GFLOPS

CRS 1.53 109 1.67 107 30.14 6.05
Original

ELL (Fig.9) 4.91 108 1.27 107 93.88 6.99

Sliced ELL
(Fig.10) 4.91 108 9.14 106 93.88 8.56

 Format of Matrix Storage CGA/hCGA
C0 [3] CRS NO CGA (Fig.2) C1 [4] ELL (Fig.9) C2 [4] CGA (Fig.3) C3 Sliced ELL (Fig.10) C4 hCGA (Fig.12)

Level=1

Level=2

Level=m 3

Level=m 3

Fine

Coarse

Level=m 2

Coarse grid solver on a
single MPI process (multi
threaded, further multigrid)

Pure Internal
Meshes
AUnew3(3,N)

Boundary Meshes
AUnew6(6,N)

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 19 -

B. Weak Scaling
The performance of weak scaling was evaluated by using 8

to 4,096 nodes (65,536 cores) of the Fujitsu FX10. The
number of finite-volume meshes per core was 262,144 (=643);
therefore, the maximum total problem size was
17,179,869,184 meshes.

Figure 13 compares four types of parallel programming
models for C3. Switching level to the coarse grid solver in
CGA is set to 7 for all of HB 4 4, HB 8 2 and HB 16 1,
which provides the best performance at 4,096 nodes for all
cases. Each of HB 4 4, HB 8 2 and HB 16 1 provides
excellent scalability up to 4,096 nodes, although HB 8 2 is
slightly faster than others. Flat MPI is much slower than other
hybrid parallel programming models with more than 104 cores
because of overhead of coarse grid solver. Figure 14 provides
the performance of C0-C3 for HB 8 2. Switching level to the
coarse grid solver in CGA (C2 and C3) is set to 7.
Improvement of performance by sliced ELL over ELL
(improvement from C2 to C3) at 4,096 nodes is 25%-31%,
and 28% for HB 8 2. Effect of sliced ELL is significant.

Figure 15 compares best results of C3 and C4 at 4,096
nodes. Effect of hCGA is not so significant except for flat
MPI where C4 is 1.61 times faster than C3. C4 is slightly
faster for HB 4 4, while C4 is slower than C3 for HB 8 2 and
HB 16 1 due to the overhead of repartitioning for hCGA. 2-
digit number in each label after a colon on the transverse axis
of Fig.15 indicates the number of iterations until convergence.
This means that hCGA can make changes on convergence.
Convergence of flat MPI and HB 4 4 is improved by hCGA.

Table 3 summarizes comparison between C3 (CGA) and
C4 (hCGA) for flat MPI and HB 4 4. Optimum number of
MPI processes after repartitioning (PErep) for each case is 128
processes (8 nodes) for flat MPI, and 256 processes (64
nodes) for HB 4 4, respectively. Optimum level for switching
to reduced number of MPI processes for hCGA (levhCGAopt) is
6 for both of flat MPI and HB 4 4, while levCGAopt for flat MPI
is 7, and that of HB 4 4 is 8. Critical mesh number per MPI
process for repartitioning is 1,000-2,000 in the existing works
[7,8], but this value for the optimum case of flat MPI is 8 in
the present work, where number of meshes in each MPI
process is equal to 8 (=23) at lev=6 as shown in Table 3.
Overhead for coarse grid solver was significant for flat MPI
with more than 104 cores, as shown in Fig.7. At 4,096 nodes,
intermediate level of this coarse grid problem was solved by 8
nodes (128 MPI processes (=PErep)) for C4, instead of by a
single core for C2 and C3.

Figure 16 compares best results of C3 and C4 for four
parallel programming models. All of them except flat MPI
(C3) are scalable up to 4,096 nodes, although HB 8 2 (C3) is
slightly faster than others. Finally, Fig.17 provides the
performance of C3 and C4 for the four parallel programming
models at 64, 512, and 4,096 nodes. Generally speaking, C4
with hCGA shows significant improvement of performance of
flat MPI, as number of nodes increases.

TABLE 3: COMPARISON OF C3 (CGA) AND C4(HCGA) AT 4,096 NODES, FOR
FLAT MPI AND HB 4 4

Fig. 13. Performance of MGCG solver on Fujitsu FX10 using up to 4,096
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG,
best results of sliced ELL with CGA (C3), switching to coarse grid solver at
level=7 for CGA

Fig. 14. Performance of MGCG solver on Fujitsu FX10 using up to 4,096
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG,
HB 8 2, C3 (sliced ELL) is 28% faster than C2 (ELL) at 4,096 nodes

Fig. 15. Performance of MGCG solver on Fujitsu FX10 using 4,096 nodes
(65,536 cores), total problem size: 17,179,869,184 meshes, comparison of C3
and C4, effect of hCGA

 levCGAopt
levhCGAopt

levhCGA-CGAopt
(PErep)

Iter’s sec.

Flat MPI
C3 7 - 64 13.2

C4 6 3 (128 proc’s
8 nodes) 61 8.22

HB 4 4
C3 8 - 59 8.08

C4 6 2 (256 proc’s,
64 nodes) 56 7.97

0.00

5.00

10.00

15.00

20.00

100 1000 10000 100000

se
c.

CORE#

HB 8x2:C0
HB 8x2:C1
HB 8x2:C2
HB 8x2:C3

5.0

7.5

10.0

12.5

15.0

100 1000 10000 100000

se
c.

CORE#

Flat MPI:C3
HB 4x4:C3
HB 8x2:C3
HB 16x1:C3

0.0

5.0

10.0

15.0

Flat MPI:
C3:64

Flat MPI:
C4:61

HB 4x4:
C3:59

HB 4x4:
C4:56

HB 8x2:
C3:55

HB 8x2:
C4:56

HB 16x1:
C3:55

HB 16x1:
C4:56

se
c.

Rest
Coarse Grid Solver
MPI_Allgather
MPI_Isend/Irecv/Allreduce

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 20 -

Fig. 16. Performance of MGCG solver on Fujitsu FX10 using up to 4,096
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG,
best results of C3 and C4, and flat MPI (C3)

Fig. 17. Performance of MGCG solver on Fujitsu FX10 using up to 4,096
nodes (65,536 cores), weak scaling: 262,144 (=643) meshes/core, max. total
problem size: 17,179,869,184 meshes, elapsed computation time for MGCG

C. Strong Scaling
Finally, the performance of strong scaling was evaluated

for a fixed size of problem with 268,435,456 meshes
(=1024 512 512) using 8 to 4,096 nodes of Fujitsu FX10. At
4,096 nodes, the problem size per each core is only 4,096
meshes (=163). Figure 18 shows the performance of the
MGCG solver, and compares C3 (sliced ELL with CGA) and
the best case of C4 (sliced ELL with hCGA) for each parallel
programming model. The performance of flat MPI (C3) with
8 nodes (128 cores) is 100%, and the parallel performance is
50%–67% up to 512 nodes (8,192 cores). At 4,096 nodes, flat
MPI (C4) provides the best performance (14.6%).
Improvement of performance of flat MPI by hCGA (from C3
to C4) is significant, and the ratio of performance is 6.27
times at 4096 nodes. Improvement of performance by sliced
ELL over original ELL (from C2 to C3) at 4,096 nodes is
21.8% (flat MPI), 14.2% (HB 4 4), 15.3% (HB 8 2), and
9.1% (HB 16 1), respectively.

D. Improvement of Parallel Communication by hCGA
In this section, effect of hCGA on improvement of parallel

communication is evaluated for both of weak and strong cases.
Figure 19 compares overhead for parallel communications per
a single CG iteration for weak scaling computation at 4,096
nodes. Overhead for parallel communication includes,
MPI_Allreduce for dot products, MPI_Isend/Irecv/Waitall for
communications at boundaries, and memory copies at

boundaries. Generally speaking, hCGA improve the parallel
communications of MGCG solver. Effect of improvement is
15% for flat MPI, and less than 1% for HB 16 1. Finally,
Fig.20 compares parallel communication overhead for strong
scaling computing at 4,096 nodes. Effect of improvement by
hCGA is more than that for weak scaling cases, where effect
of improvement is 35% for flat MPI, and 8% for HB 16 1.

Fig. 18. Performance of MGCG solver on Fujitsu FX10 using up to 4,096
nodes (65,536 cores), strong scaling: 268,435,456 meshes (=1024 512 512),
parallel performance based on the performance of flat MPI (C3) with 8 nodes
(128 cores)

Fig. 19. Effect of hCGA on overhead of parallel communications in MGCG
solver, overhead for parallel communications per a single CG iteration, total
problem size: 17,179,869,184 meshes at 4,096 nodes

Fig. 20. Effect of hCGA on overhead of parallel communications in MGCG
solver, overhead for parallel communications per a single CG iteration, total
problem size: 268,435,456 meshes at 4,096 nodes

V. SUMMARY AND FUTURE WORK
The parallel multigrid and MGCG include both of serial

and parallel communication processes which are generally
expensive. In the present work, new format for sparse matrix
storage based on sliced ELL is proposed for optimization of

0.0

5.0

10.0

15.0

Flat MPI HB 4x4 HB 8x2 HB 16x1

se
c.

C3, 64 nodes
C4, 64 nodes
C3, 512 nodes
C4, 512 nodes
C3, 4,096 nodes
C4, 4,096 nodes

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

Flat MPI HB 4x4 HB 8x2 HB 16x1

se
c.

/it
er

at
io

n

CGA-best (C3)
hCGA-best (C4)

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

Flat MPI HB 4x4 HB 8x2 HB 16x1

se
c.

/it
er

at
io

n

CGA-best (C3)
hCGA-best (C4)

5.0

7.5

10.0

12.5

15.0

100 1000 10000 100000

se
c.

CORE#

Flat MPI:C3
Flat MPI:C4
HB 4x4:C4
HB 8x2:C3
HB 16x1:C3

0

20

40

60

80

100

120

1024 8192 65536

Pa
ra

lle
l P

er
fo

rm
an

ce
 (%

)

CORE#

Flat MPI:C3 Flat MPI:C4
HB 4x4:C3 HB 4x4:C4
HB 8x2:C3 HB 8x2:C4
HB 16x1:C3 HB 16x1:C4

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 21 -

serial communication on memories, and hierarchical coarse
grid aggregation (hCGA) is introduced for optimization of
parallel communication by message passing. The proposed
methods are implemented for pGW3D-FVM, and the
robustness and performance of the code was evaluated using
up to 4,096 nodes (65,536 cores) of the Fujistu FX10 system.
The parallel MGCG solver using the sliced ELL format
provided performance improvement in both weak scaling
(25%–31%) and strong scaling (9%–22%) compared to the
code using the original ELL format [4]. Moreover, hCGA
provided excellent performance improvement in both weak
scaling (1.61 times) and strong scaling (6.27 times) for flat
MPI parallel programming model. hCGA was also effective
for improvement of parallel communications. Effect of sliced
ELL on serial communication was significant, while that of
hCGA on parallel communication was not so impressive
except for flat MPI cases. Because hCGA proved to be very
effective for reducing overhead of coarse grid solver, that will
also provide more significant effect on hybrid parallel
programming models with larger number of nodes. As was
mentioned in Chapter II, computational amount of coarse grid
solver for each core of flat MPI is 256 (=16 16) times as large
as that of HB 16 1. Therefore, hCGA is expected to be really
effective for HB 16 1 with more than 2.50 105 nodes
(4.00 106 cores) of Fujitsu FX10, where the peak performance
is more than 60 PFLOPS.

In the present work, we focused on optimization of
communications with neighboring MPI processes at process
boundaries by MPI_Isend/Irecv/Waitall as parallel
communication, but overhead by collective communication
(e.g. MPI_Allreduce) is more significant with more than
2.50 105 nodes. Figure 21 shows overhead by a single
MPI_Allreduce call for sending a single scalar variable for dot
product in the weak scaling case of MGCG solver, with up to
4,096 nodes of Fujitsu FX10. In order to reduce overhead by
this type collective communication, communication
avoiding/hiding type of algorithm combined with MPI
functions for non-blocking collective communications
supported in MPI 3.0 specification [13] is also effective.

Fig. 21. Overhead by MPI_Allreduce for dot product (a single scalar variable)
of MGCG solver on Fujitsu FX10 using up to 4,096 nodes (65,536 cores),
weak scaling: 262,144 (=643) meshes/core, max. total problem size:
17,179,869,184 meshes, best results of C3 and C4

More efficient storage of sliced ELL arrays and

optimization of hCGA function are the critical issues for

future work. Especially, improvement of communication
procedures for repartitioning of MPI processes is important.
CGA and hCGA include a various types of parameters, and
the optimum values of those were derived through empirical
studies in the present work. Development of methods for
automatic selection of these parameters [14] is also an
interesting technical issue for future work. Optimum
parameters can be estimated based on calculation of
computational amounts, performance models, parameters of
hardware, and some measured performance of the system. But
it is not so straightforward. Because some of these parameters
also make effects on convergence, construction of such
methods for automatic selection is really challenging.

ACKNOWLEDGMENT
This work is supported by Core Research for Evolutional

Science and Technology (CREST), the Japan Science and
Technology Agency (JST), Japan. The computational
resource of Fujitsu FX10 was awarded by the “Large-scale
HPC Challenge” Project, Information Technology Center, the
University of Tokyo.

REFERENCES
[1] HPCG: High Performance Conjugate Gradients:

https://software.sandia.gov/hpcg/
[2] Nakajima, K., New strategy for coarse grid solvers in parallel multigrid

methods using OpenMP/MPI hybrid programming models”, ACM
Proceedings of the 2012 International Workshop on Programming
Models & Applications for Multi/Manycores (2012)

[3] Nakajima, K., OpenMP/MPI Hybrid Parallel Multigrid Method on
Fujitsu FX10 Supercomputer System, IEEE Proceedings of 2012
International Conference on Cluster Computing Workshops, IEEE
Digital Library: 10.1109/ClusterW.2012.35 (2012) 199-206

[4] Nakajima, K., Large-scale Simulations of 3D Groundwater Flow using
Parallel Geometric Multigrid Method, Procedia Computer Science 18
(2013) 1265-1274

[5] Information Technology Center, The University of Tokyo:
http://www.cc.u-tokyo.ac.jp/

[6] Baker, A., T. Gamblin, M. Schultz, U. Yang, Challenge of Scaling
Algebraic Multigrid across Modern Multicore Architectures,
Proceedings of the 2011 IEEE International Parallel & Distributed
Processing Symposium (IPDPS’11) (2011) 275-286

[7] Lin, P.T., Improving multigrid performance for unstructured mesh
drift-diffusion simulations on 147,000 cores, International Journal for
Numerical Methods in Engineering 91 (2012) 971-989

[8] Sundar, H., G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler,
Parallel Geometric-Algebraic Multigrid on Unstructured Forests of
Octrees, ACM/IEEE Proceedings of the 2012 International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC12) (2012)

[9] Fujitsu: http://www.fujitsu.com/
[10] Deutsch, C.V. and A.G. Journel, GSLIB Geostatistical Software

Library and User’s Guide, Second Edition. Oxford University Press
(1998)

[11] Smith, B., P. Bj rstad, and W. Gropp, Domain Decomposition,
Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge Press (1996)

[12] Monakov, A., A. Lokhmotov, and A. Avetisyan, Automatically tuning
sparse matrix-vector multiplication for GPU architectures, Lecture
Notes in Computer Science 5952 (2010) 112-125

[13] Ghysels, P. and W. Vanroose, Hiding global synchronization latency in
the preconditioned Conjugate Gradient algorithm, Parallel Computing
40-7 (2014) 224-238

[14] Nakajima, K., Automatic Tuning of Parallel Multigrid Solvers using
OpenMP/MPI Hybrid Parallel Programming Models, Lecture Notes in
Computer Science 7851 (2013) 435-450

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

100 1000 10000 100000

se
c.

/M
PI

_A
llr

ed
uc

e

MPI Process #

Flat MPI
HB 4x4
HB 8x2
HB 16x1

スーパーコンピューティングニュース� Vol.�17,�No.�6　2015- 22 -

