
1)https://www.ixpug.org/events/ixpug-hpc-asia-2022

Exploring Communication-Computation Overlap in

Parallel Iterative Solvers on Manycore CPUs using

Asynchronous Progress Control

堀越将司 a)，Balazs Gerofi b)，石川裕 c)，中島研吾 b,d)

(a) インテル，(b) 理化学研究所，(c) 国立情報学研究所，(d) 東京大学情報基盤センター

本稿では，2019年 5月，2021年 10月に実施された大規模 HPCチャレンジの結果を報告する。本

大規模 HPCチャレンジの成果をまとめた論文「Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa and

Kengo Nakajima, Exploring Communication-Computation Overlap in Parallel Iterative Solvers on

Manycore CPUs using Asynchronous Progress Control」は，2022年 1月にオンラインで開催されたHPC

Asia 2022 でのワークショップ IXPUG（Intel eXtreme Performance Users Group）１に採択され，

Proceedings（ACM Digital Library）に掲載された。本稿は出版元である ACM の許可を受け次ペ

ージ以降に上記論文の全文を掲載するものである。

Reprinted with permission from ACM, full credit to the original source (Masashi Horikoshi,

Balazs Gerofi, Yutaka Ishikawa and Kengo Nakajim, Exploring Communication-Computation

Overlap in Parallel Iterative Solvers on Manycore CPUs using Asynchronous Progress Control,

HPCAsia 2022 Workshop: International Conference on High Performance Computing in

Asia-Pacific Region Workshops (January 2022) 29-39) followed by the ACM copyright line c

[2022] ACM. (https://dl.acm.org/doi/10.1145/3503470.3503474)

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 94 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous

Progress Control
Masashi Horikoshi

Accelerated Computing Systems and Graphics (AXG)
Group, Intel Corporation

Japan
Masashi.Horikoshi@intel.com

Balazs Gerofi
RIKEN Center for Computational Science (R-CCS)

Japan
bgerofi@riken.jp

Yutaka Ishikawa
National Institute of Informatics

Japan
yutaka_ishikawa@nii.ac.jp

Kengo Nakajima
Information Technology Center, The University of Tokyo/

RIKEN Center for Computational Science (R-CCS)
Japan

nakajima@cc.u-tokyo.ac.jp

ABSTRACT
Preconditioned parallel solvers based on the Krylov iterativemethod
are widely used in scientific and engineering applications. Commu-
nication overhead is a critical issue when executing these solvers
on large-scale massively parallel supercomputers. In this work, we
investigate communication-computation overlapping by asynchro-
nous progress control to various types of preconditioned conjugate
gradient methods for parallel finite-element applications. Perfor-
mance of the developed method is evaluated using up to 4,096 nodes
of the Oakforest-PACS system at JCAHPC, equipped with Intel®
Xeon Phi™ Manycore Processors. We show that the performance of
the iterative solver can be improved by up to 38% on 4,096 nodes.We
apply the IHK/McKernel lightweight multi-kernel operating system
and find that it can provide 20% and 6% improvements on 2,048 and
4,096 node respectively. Furthermore, we investigate the effects of
asynchronous communication progression on the IHK/McKernel
and find that it can provide an 2-3% improvement from 128 node to
1,024 node.

CCS CONCEPTS
•Networks→Network performance analysis;Networkmea-
surement; • Applied computing → Earth and atmospheric
sciences; Engineering.

KEYWORDS
iterative solver, MPI, non-blocking communication, asynchronous
progress threads, lightweight kernel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9564-9/22/01. . . $15.00
https://doi.org/10.1145/3503470.3503474

ACM Reference Format:
Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima.
2022. Exploring Communication-Computation Overlap in Parallel Iterative
Solvers on Manycore CPUs using Asynchronous Progress Control. In Inter-
national Conference on High Performance Computing in Asia-Pacific Region
Workshops (HPCAsia 2022 Workshop), January 11–14, 2022, Virtual Event,
Japan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3503470.
3503474

1 INTRODUCTION
Preconditioned parallel solvers based on the Krylov iterativemethod
are widely used in scientific and engineering applications. Commu-
nication overhead is a critical issue when executing these solvers on
large-scale massively parallel supercomputers. In the present work,
we introduced communication-computation overlapping by asyn-
chronous progress control [1], which is supported by Intel® MPI Li-
brary from version 2019, to various types of preconditioned Krylov
iterative methods, such as pipelined conjugate gradient method
[2]. We focus on optimization of global collective communications
for dot products in parallel Krylov iterative solvers. Target linear
equations are derived from GeoFEM/Cube [3], which is a parallel
finite-element application on massively parallel supercomputers.
Performance of the developed method was evaluated using up to
4,096 nodes of the Oakforest-PACS (OFP) system at JCAHPC with
Intel Xeon Phi Manycore Processors[4], and the performance of
the iterative solver was evaluated.

In the previous works [5][6], we examined the impact of the
IHK/McKernel [10], lightweightmulti-kernel OS developed at RIKEN
R-CCS, which provides efficient and scalable execution environ-
ment on large-scale systems by reducing OS noise and commu-
nication overhead. Improvement of the performance of parallel
multigrid solvers was 10-20% at 2,048 nodes of OFP. In the present
work, effects of IHK/McKernal were also evaluated for Asynchro-
nous Progress Control.

The rest of this paper is organized as follows. Section refsect:appl
provides an overview of the target application and algorithms. Sec-
tion 3 provides a brief summary of the target hardware system.

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

Figure 1: Simple cube geometry for 3D linear elasticity prob-
lems in GeoFEM/Cube [3]

Section 4 overviews Intel’s Asynchronous Progress Control. Sec-
tion 5 presents overview of IHK/McKernel, and special configura-
tion of threads for Intel’s Asynchronous Progress Control. Section
6 describes numerical experiments and results. Finally, Section 8
concludes the paper and offers future perspective.

2 TARGET APPLICATION AND ALGORITHMS
2.1 GeoFEM/Cube
GeoFEM/Cube [3] is the target application, and it solves 3D linear
elasticity problems in simple cube geometries using a parallel FEM.
Tri-linear hexahedral elements are used for the discretization. Mate-
rial properties are defined as homogeneous, where Poisson’s ratio is
set to 0.30 for all elements and Young’s modulus is 1.00. The bound-
ary conditions are described in Fig 1. Large-scale linear equations
with sparse matrices derived from the application are solved by pre-
conditioned Krylov iterative methods . The original GeoFEM/Cube
adopts the incomplete Cholesky conjugate gradient (ICCG) method
[11] with preconditioning by incomplete Cholesky factorization
without fill-ins (IC(0)) [11]. The additive Schwarz domain decom-
position (ASDD) for overlapped regions [12] is introduced for sta-
bilization of parallel IC(0) with block-Jacobi-type localization. The
GeoFEM/Cube application is parallelized by domain decomposition
using the Message-Passing Interface (MPI) [3]. In the OpenMP/MPI
hybrid parallel programming model, multithreading by OpenMP
is applied to each partitioned domain. GeoFEM/Cube is written in
Fortran with MPI and OpenMP.

In GeoFEM/Cube, the entire model is divided into domains, and
each domain is assigned to an MPI process, as shown in Fig.2. The
local data structure in GeoFEM/Cube is node-based with overlap-
ping elements, and as such is appropriate for the preconditioned
iterative solvers used in GeoFEM/Cube (Fig.3).

GeoFEM/Cube generates distributed local meshes and coefficient
matrices in a parallel manner using MPI. In GeoFEM/Cube, each
MPI process has (Nx/Px) × (Ny/Py) × (Nz/Pz) vertices, while the
total number of vertices in each direction is (Nx ,Ny,Nz) and the
number of partitions in each direction is (Px , Py, Pz).

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

7 8 9 10

4 5 6 12

3 111 2

PE#1

7 1 2 3

10 9 11 12

5 68 4

PE#2

3 4 8

6 9

10 12

1 2

5

11

7
PE#3

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

7 8 9 10

4 5 6 12

3 111 2

PE#1

7 1 2 3

10 9 11 12

5 68 4

PE#2

3 4 8

6 9

10 12

1 2

5

11

7
PE#3

5

21 22 23 24 25

16 17 18 19 20

11 13 14 15

6
7 8 9

10

PE#0PE#1

PE#2PE#3

12

32 41 5

21 22 23 24 25

16 17 18 19 20

11 13 14 15

6
7 8 9

10

PE#0PE#1

PE#2PE#3

12

32 41

Figure 2: Node-based partitioning in GeoFEM/Cube [3]

7 1 2 3

10 9 11 12

5 68 4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

RECEIVE

7 1 2 3

10 9 11 12

5 68 4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

7 1 2 3

10 9 11 12

5 68 4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

RECEIVE

7 1 2 3

10 9 11 12

5 68 4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

SEND

7 1 2 3

10 9 11 12

5 68 4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

7 1 2 3

10 9 11 12

5 68 4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

SEND

Figure 3: Communications among MPI processes [3]

2.2 Pipelined CG
Algorithm 1 shows the preconditioned conjugate gradient method
(PCG) [11], which includes SpMV, dot products, the DAXPY com-
putations, and preconditioning.

Algorithm 1 Preconditioned Conjugate Gradient Method (PCG)
[11]

1: r (0) = b −Ax (0); u(0) = M−1r (0); p(0) = u(0); ρ0 = (r (0),u(0))
2: for k = 0, 1, . . . , until convergence do:
3: q(k) = Ap(k)

4: αk = ρk/(p(k),q(k));
5: x (k+1) = x (k) + αkp(k)

6: r (k+1) = r (k) − αkq
(k) ⇒ check converдence : |r (k+1) |

7: u(k+1) = M−1r (k+1)

8: ρk+1 = (r (k+1),u(k+1))
9: βk+1 = ρk+1/ρk
10: p(k+1) = u(k+1) + βk+1p(k)

11: end for

In computations on parallel computers with distributed memory,
SpMV (Sparse Matrix-Vector Multiplication), dot products, and
preconditioning may require communication. Although there are
various types of communication patterns in preconditioning, SpMV
relies upon point-to-point communication with neighbors and dot
products rely upon global collective communication [3][11].

If the code is implemented by MPI, MPI_Isend and MPI_Irecv
with MPI_Wait/Waitall are used in SpMV, and MPI_Allreduce is

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 95 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous

Progress Control
Masashi Horikoshi

Accelerated Computing Systems and Graphics (AXG)
Group, Intel Corporation

Japan
Masashi.Horikoshi@intel.com

Balazs Gerofi
RIKEN Center for Computational Science (R-CCS)

Japan
bgerofi@riken.jp

Yutaka Ishikawa
National Institute of Informatics

Japan
yutaka_ishikawa@nii.ac.jp

Kengo Nakajima
Information Technology Center, The University of Tokyo/

RIKEN Center for Computational Science (R-CCS)
Japan

nakajima@cc.u-tokyo.ac.jp

ABSTRACT
Preconditioned parallel solvers based on the Krylov iterativemethod
are widely used in scientific and engineering applications. Commu-
nication overhead is a critical issue when executing these solvers
on large-scale massively parallel supercomputers. In this work, we
investigate communication-computation overlapping by asynchro-
nous progress control to various types of preconditioned conjugate
gradient methods for parallel finite-element applications. Perfor-
mance of the developed method is evaluated using up to 4,096 nodes
of the Oakforest-PACS system at JCAHPC, equipped with Intel®
Xeon Phi™ Manycore Processors. We show that the performance of
the iterative solver can be improved by up to 38% on 4,096 nodes.We
apply the IHK/McKernel lightweight multi-kernel operating system
and find that it can provide 20% and 6% improvements on 2,048 and
4,096 node respectively. Furthermore, we investigate the effects of
asynchronous communication progression on the IHK/McKernel
and find that it can provide an 2-3% improvement from 128 node to
1,024 node.

CCS CONCEPTS
•Networks→Network performance analysis;Networkmea-
surement; • Applied computing → Earth and atmospheric
sciences; Engineering.

KEYWORDS
iterative solver, MPI, non-blocking communication, asynchronous
progress threads, lightweight kernel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9564-9/22/01. . . $15.00
https://doi.org/10.1145/3503470.3503474

ACM Reference Format:
Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima.
2022. Exploring Communication-Computation Overlap in Parallel Iterative
Solvers on Manycore CPUs using Asynchronous Progress Control. In Inter-
national Conference on High Performance Computing in Asia-Pacific Region
Workshops (HPCAsia 2022 Workshop), January 11–14, 2022, Virtual Event,
Japan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3503470.
3503474

1 INTRODUCTION
Preconditioned parallel solvers based on the Krylov iterativemethod
are widely used in scientific and engineering applications. Commu-
nication overhead is a critical issue when executing these solvers on
large-scale massively parallel supercomputers. In the present work,
we introduced communication-computation overlapping by asyn-
chronous progress control [1], which is supported by Intel® MPI Li-
brary from version 2019, to various types of preconditioned Krylov
iterative methods, such as pipelined conjugate gradient method
[2]. We focus on optimization of global collective communications
for dot products in parallel Krylov iterative solvers. Target linear
equations are derived from GeoFEM/Cube [3], which is a parallel
finite-element application on massively parallel supercomputers.
Performance of the developed method was evaluated using up to
4,096 nodes of the Oakforest-PACS (OFP) system at JCAHPC with
Intel Xeon Phi Manycore Processors[4], and the performance of
the iterative solver was evaluated.

In the previous works [5][6], we examined the impact of the
IHK/McKernel [10], lightweightmulti-kernel OS developed at RIKEN
R-CCS, which provides efficient and scalable execution environ-
ment on large-scale systems by reducing OS noise and commu-
nication overhead. Improvement of the performance of parallel
multigrid solvers was 10-20% at 2,048 nodes of OFP. In the present
work, effects of IHK/McKernal were also evaluated for Asynchro-
nous Progress Control.

The rest of this paper is organized as follows. Section refsect:appl
provides an overview of the target application and algorithms. Sec-
tion 3 provides a brief summary of the target hardware system.

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

Figure 1: Simple cube geometry for 3D linear elasticity prob-
lems in GeoFEM/Cube [3]

Section 4 overviews Intel’s Asynchronous Progress Control. Sec-
tion 5 presents overview of IHK/McKernel, and special configura-
tion of threads for Intel’s Asynchronous Progress Control. Section
6 describes numerical experiments and results. Finally, Section 8
concludes the paper and offers future perspective.

2 TARGET APPLICATION AND ALGORITHMS
2.1 GeoFEM/Cube
GeoFEM/Cube [3] is the target application, and it solves 3D linear
elasticity problems in simple cube geometries using a parallel FEM.
Tri-linear hexahedral elements are used for the discretization. Mate-
rial properties are defined as homogeneous, where Poisson’s ratio is
set to 0.30 for all elements and Young’s modulus is 1.00. The bound-
ary conditions are described in Fig 1. Large-scale linear equations
with sparse matrices derived from the application are solved by pre-
conditioned Krylov iterative methods . The original GeoFEM/Cube
adopts the incomplete Cholesky conjugate gradient (ICCG) method
[11] with preconditioning by incomplete Cholesky factorization
without fill-ins (IC(0)) [11]. The additive Schwarz domain decom-
position (ASDD) for overlapped regions [12] is introduced for sta-
bilization of parallel IC(0) with block-Jacobi-type localization. The
GeoFEM/Cube application is parallelized by domain decomposition
using the Message-Passing Interface (MPI) [3]. In the OpenMP/MPI
hybrid parallel programming model, multithreading by OpenMP
is applied to each partitioned domain. GeoFEM/Cube is written in
Fortran with MPI and OpenMP.

In GeoFEM/Cube, the entire model is divided into domains, and
each domain is assigned to an MPI process, as shown in Fig.2. The
local data structure in GeoFEM/Cube is node-based with overlap-
ping elements, and as such is appropriate for the preconditioned
iterative solvers used in GeoFEM/Cube (Fig.3).

GeoFEM/Cube generates distributed local meshes and coefficient
matrices in a parallel manner using MPI. In GeoFEM/Cube, each
MPI process has (Nx/Px) × (Ny/Py) × (Nz/Pz) vertices, while the
total number of vertices in each direction is (Nx ,Ny,Nz) and the
number of partitions in each direction is (Px , Py, Pz).

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

7 8 9 10

4 5 6 12

3 111 2

PE#1

7 1 2 3

10 9 11 12

5 68 4

PE#2

3 4 8

6 9

10 12

1 2

5

11

7
PE#3

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

7 8 9 10

4 5 6 12

3 111 2

PE#1

7 1 2 3

10 9 11 12

5 68 4

PE#2

3 4 8

6 9

10 12

1 2

5

11

7
PE#3

5

21 22 23 24 25

16 17 18 19 20

11 13 14 15

6
7 8 9

10

PE#0PE#1

PE#2PE#3

12

32 41 5

21 22 23 24 25

16 17 18 19 20

11 13 14 15

6
7 8 9

10

PE#0PE#1

PE#2PE#3

12

32 41

Figure 2: Node-based partitioning in GeoFEM/Cube [3]

7 1 2 3

10 9 11 12

5 68 4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

RECEIVE

7 1 2 3

10 9 11 12

5 68 4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

7 1 2 3

10 9 11 12

5 68 4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

RECEIVE

7 1 2 3

10 9 11 12

5 68 4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

SEND

7 1 2 3

10 9 11 12

5 68 4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

7 1 2 3

10 9 11 12

5 68 4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3 4 8

6 9

10 12

1 2

5

11

7

PE#3

SEND

Figure 3: Communications among MPI processes [3]

2.2 Pipelined CG
Algorithm 1 shows the preconditioned conjugate gradient method
(PCG) [11], which includes SpMV, dot products, the DAXPY com-
putations, and preconditioning.

Algorithm 1 Preconditioned Conjugate Gradient Method (PCG)
[11]

1: r (0) = b −Ax (0); u(0) = M−1r (0); p(0) = u(0); ρ0 = (r (0),u(0))
2: for k = 0, 1, . . . , until convergence do:
3: q(k) = Ap(k)

4: αk = ρk/(p(k),q(k));
5: x (k+1) = x (k) + αkp(k)

6: r (k+1) = r (k) − αkq
(k) ⇒ check converдence : |r (k+1) |

7: u(k+1) = M−1r (k+1)

8: ρk+1 = (r (k+1),u(k+1))
9: βk+1 = ρk+1/ρk
10: p(k+1) = u(k+1) + βk+1p(k)

11: end for

In computations on parallel computers with distributed memory,
SpMV (Sparse Matrix-Vector Multiplication), dot products, and
preconditioning may require communication. Although there are
various types of communication patterns in preconditioning, SpMV
relies upon point-to-point communication with neighbors and dot
products rely upon global collective communication [3][11].

If the code is implemented by MPI, MPI_Isend and MPI_Irecv
with MPI_Wait/Waitall are used in SpMV, and MPI_Allreduce is

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 96 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous Progress Control HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan

used in dot products. The overhead for such communications is a
critical issue on massively parallel supercomputers with more than
104 MPI processes.

In recent years, many algorithms and methods for avoiding and
reducing communication overhead have been proposed. Methods
based on the matrix powers kernel [13] reduce the number of global
communications at each iteration by extending the halo region in
Figs. 2 and 3. They generally require complicated data structures
and are not suitable for general preconditioning methods, such as
incomplete LU (ILU).

In [2], several methods for conjugate gradient methods, which
reduce overhead of global collective communications for dot prod-
ucts, are introduced. The sequence of Krylov iterations is changed
using recurrence relations without changing the original algorithm.
Because the order of computation is changed, rounding errors are
propagated differently. Therefore, convergence may be affected in
ill-conditioned problems. Authors applied computing with single
precision to such algorithms, and results show that original CG
is the most robust [14]. This does not happen for the cases with
double precision for ill-conditioned problems in the present work.

Algorithm 2 shows PCG using Chronopouos/Gear CG method
[15], where 2 dot products are combined into a single reduction.
Thus, overhead for calling MPI_Allreduce may be reduced.

Algorithm 2 Preconditioned Chronopoulos/Gear Conjugate Gra-
dient Method [15]

1: r (0) = b − Ax (0); u(0) = M−1r (0); p(0) = u(0); q(0) = Ap(0);
γ0 = (r (0)

2: for k = 0, 1, . . . , until convergence do:
3: p(k+1) = u(k) + βkp(k)

4: q(k+1) = w(k) + βkq(k)

5: x (k+1) = x (k) + αkp(k+1)

6: r (k+1) = r (k) − αkq
(k+1) ⇒ check converдence : |r (k+1) |

7: u(k+1) = M−1r (k+1)

8: w(k+1) = Au(k+1)

9: γk+1 = (r (k+1),u(k+1))
10: δk+1 = (w(k+1),u(k+1))
11: βk+1 = γk+1/γk
12: αk+1 = γk+1/(δk+1 − βk+1γk+1/αk)
13: end for

The pipelined method [2] reduces communications overhead by
overlapping global collective communications and computations.

Algorithm 3 shows Preconditioned Pipeined CGmethod [2]. This
method is derived from Algorithm 2.

In pipelined CG [2], collective communication for dot products
can be overlapped with heavier computations, such as SpMV and
preconditioning. In the original CG algorithm (Algorithm1), dot
products (αk = ρk/(p(k),q(k)) in line-4, and ρk+1 = (r (k+1),u(k+1))
in line-8) are used in the next lines (line-5 and line-9), while they are
used after in SpMV and preconditioning in the pipelined algorithm.
δk = (p(k),q(k)) is defined in line-3, and it it used in line-5, therefore
computing of δk can be overlapped with z(k) = M−1q(k) in line-4.
γk+1 = (r (k+1),u(k+1)) is defined in line-9, and it is used in line-11
afterw(k+1) = Au(k+1) in line-10.

Asynchronous collective communication (e.g., MPI_Iallreduce)
supported in MPI-3 is effective for such procedures.

In [16], the authors implemented pipelined CG to the original
GeoFEM/Cube with ICCG and ASDD using up to 12,288 cores
(384 nodes) of the Reedbush-U system [17] with Intel® Xeon® E5-
2695v4 (code name: Broadwell-EP) CPUs using Intel® MPI 2017. Fig.
4 compares the original and pipelined CGmethod for strong scaling.
Pipelined CG provides much better scalability than the original CG.
Pipelined CG is effective in the very limited case of strong scaling,
where the problem size per MPI process is very small.

Algorithm 3 Preconditioned Pipelined Conjugate Gradient
Method [2]

1: r (0) = b−Ax (0);u(0) = M−1r (0);p(0) = u(0);q(k) = Ap(k);w(0) =
Au(0); α0 = (r (0),u(0))/(w(0),u(0)); β0 = 0; γ0 = (r (0),u(0))

2: for k = 0, 1, . . . , until convergence do:
3: δk = (p(k),q(k))
4: z(k) = M−1q(k)

5: αk = γk/δk
6: x (k+1) = x (k) + αkp(k)

7: r (k+1) = r (k) − αkq
(k) ⇒ check converдence : |r (k+1) |

8: u(k+1) = u(k) − αkz
(k)

9: γk+1 = (r (k+1),u(k+1))
10: w(k+1) = Au(k+1)

11: βk+1 = γk+1/γk
12: p(k+1) = u(k+1) + βk+1p(k)

13: q(k+1) = w(k+1) + βk+1q(k)

14: end for

0

2000

4000

6000

8000

10000

0 2048 4096 6144 8192 10240 12288

Sp
ee

d-
U

p

CORE#

Original CG
Pipelined CG
Ideal

Figure 4: Effects of pipelined CG [16] for GeoFEM/Cube
with ICCG and ASDD using up to 12,288 cores (384 nodes)
of Reedbush-U [16] and strong scaling; total problem size:
28,311,552 DOF

Finally, Algorithm 4 shows Preconditioned Gropp’s CG method
[2][18]. While this method is similar to Algorithm 3, computations
are smaller than those of Algorithm 3. Dot products in line-3 and
line-4 (γk , δk) are overlapped with preconditioning in line-5 and
SpMV in line-6.

In the present work, following four algorithms for the conjugate
gradient method are evaluated. Each method includes one SpMV

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

(Sparse Matrix Vector Multiply), one preconditioning and three dot
products for each iteration. Number of DAXPY ’s (constant times a
vector plus a vector (axpy) in double-precision) in each method as
follows. 8 DAXPY’s in a iteration of Pipelined CG (Alg.3), while it
is 3 in the original CG (Alg.1):

• Algorithm 1: Original CG (3 DAXPY’s in one iteration) [11]
• Algorithm 2: Chronopoulos/Gear CG (4 DAXPY’s) [15]
• Algorithm 3: Pipelined CG (8 DAXPY’s) [2]
• Algorithm 4: Gropp’s CG (5 DAXPY’s) [2][18]

Algorithm 4 Preconditioned Gropp’s Conjugate Gradient Method
[2][18]

1: r (0) = b − Ax (0); u(0) = M−1r (0); w(0) = Au(0); z(0) = q(0) =
s(0) = p(0) = 0

2: for k = 0, 1, . . . , until convergence do:
3: γk = (r (k),u(k))
4: δk = (w(k),u(k))
5: m(k) = M−1w(k)

6: n(k) = Am(k)

7: if k > 0 then
8: βk = γk/γk−1;αk = γk/(δk − βkγk/αk−1)
9: else
10: β0 = 0; αk = γk/δk
11: end if
12: z(k+1) = n(k) + βkz(k)

13: s(k+1) =m(k) + βks(k)

14: q(k+1) = w(k) + βkq(k)

15: p(k+1) = u(k) + βkp(k)

16: x (k+1) = x (k) + αkp(k)

17: r (k+1) = r (k) − αkq
(k) ⇒ check converдence : |r (k+1) |

18: u(k+1) = u(k) − αks
(k)

19: w(k+1) = w(k) − αkz
(k)

20: end for

3 TARGET HARDWARE (OAKFOREST-PACS,
OFP)

The Oakforest-PACS system (OFP) [4] is the premiere supercom-
puter system at the Joint Center for Advanced High-Performance
Computing (JCAHPC) [4] , which was established by the University
of Tokyo and University of Tsukuba. The system consists of 8,208
nodes of Intel Xeon Phi 7250 (code name: Knights Landing, or KNL),
and Intel® Omni-Path Architecture (Intel® OPA) provides a 100 Gbps
interconnection in a fat-tree topology with full bisection bandwidth.
Each Xeon Phi 7250 node is built using 68 modified Atom® (code
name: Silvermont) cores running at 1.4 GHz, and the memory unit
consists of 96 GB of DDR4 RAM and 16 GB of stacked 3DMCDRAM,
which can be utilized as an L3 cache or high-bandwidth memory.
Each core has two 512-bit vector units and supports AVX-512 SIMD
instructions. Each core can host four threads (i.e., 272 overall logical
CPUs on the entire chip) and is equipped with 2 512-bit floating-
point vector ALU. The total theoretical computational performance
is 25 PFLOPS, and the system achieved 13.55 PFLOPS on the HPL
benchmark. In the present work, only MCDRAMwas used for mem-
ory in the flat/quadrant mode on the OFP. Intel’s compiler and MPI

library (2018) were used. Table 1 summarizes the specifications of
each node of OFP.

Table 1: Summary of the performance of single node of the
Oakforest-PACS(OFP)

Architecture Intel Xeon Phi 7250
(Knights Landing)

Frequency(GHz) 1.40

Core # /CPU (socket) (Maximum
Effective Thread #)

68 (272)

Peak Performance (GFLOPS) 3,046.4

Memory Size (GB) MCDRAM:16,DDR4:96

Memory Bandwidth (GB/sec) MCDRAM:490 [20],
DDR4:84

Compiler & MPI Library Intel® Parallel Studio 2019
XE, Intel MPI 2019

4 ASYNCHRONOUS PROGRESS CONTROL
4.1 Overview
MPI Non-blocking communication in application thread (e.g. for
MPI_Isend) is expected to run asynchronously. To do that, progress
thread is required if MPI communication is not completely offloaded.
But turning on the progress thread (e.g. for MPI_test) requires
MPI_THREAD_MULTIPLE. But in most case, MPI progress thread is
not practically used due to poor MPI performance due to serializa-
tion around one queue for all threads, thread switching overhead,
and process-wideMPI objectsmanagement overhead. Because those
restrictions are closely related with MPI 3.1 standard (defined as
"threads are not separately addressable: a rank in a send or receive
call identifies a process, not a thread”). Those history and practices
are well summarized in [21]. To overcome such restrictions, Intel
MPI 2019 developed new asynchronous progress design, which is
based on MPICH asynchronous design. From Intel MPI version
2019, it supports the new asynchronous progress threads that users
to manage communication in parallel with application’s computa-
tion to achieve better communication and computation overlapping.
Asynchronous progress control on the Intel MPI has a full support
for MPI point-to-point operations, blocking collectives, and a partial
support for non-blocking collectives (MPI_Ibcast, MPI_Ireduce,
and MPI_Iallreduce).

Setting the I_MPI_ASYNC_PROGRESS_PIN environment variable
on the Intel MPI allows to control a pinning of the asynchronous
progress threads to logical processor cores. By using this feature 1,
we can provide separate dedicated cores for asynchronous progress
threads.

4.2 Core Configuration
By default, Intel MPI allocates cpu core resource to the asynchro-
nous progress threads from last logical core. For the 68 cores Intel
1To enable asynchronous progress control on the Intel MPI, environment variable
I_MPI_ASYNC_PROGRESS=on, after loading release_mt environment, is required.

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 97 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous Progress Control HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan

used in dot products. The overhead for such communications is a
critical issue on massively parallel supercomputers with more than
104 MPI processes.

In recent years, many algorithms and methods for avoiding and
reducing communication overhead have been proposed. Methods
based on the matrix powers kernel [13] reduce the number of global
communications at each iteration by extending the halo region in
Figs. 2 and 3. They generally require complicated data structures
and are not suitable for general preconditioning methods, such as
incomplete LU (ILU).

In [2], several methods for conjugate gradient methods, which
reduce overhead of global collective communications for dot prod-
ucts, are introduced. The sequence of Krylov iterations is changed
using recurrence relations without changing the original algorithm.
Because the order of computation is changed, rounding errors are
propagated differently. Therefore, convergence may be affected in
ill-conditioned problems. Authors applied computing with single
precision to such algorithms, and results show that original CG
is the most robust [14]. This does not happen for the cases with
double precision for ill-conditioned problems in the present work.

Algorithm 2 shows PCG using Chronopouos/Gear CG method
[15], where 2 dot products are combined into a single reduction.
Thus, overhead for calling MPI_Allreduce may be reduced.

Algorithm 2 Preconditioned Chronopoulos/Gear Conjugate Gra-
dient Method [15]

1: r (0) = b − Ax (0); u(0) = M−1r (0); p(0) = u(0); q(0) = Ap(0);
γ0 = (r (0)

2: for k = 0, 1, . . . , until convergence do:
3: p(k+1) = u(k) + βkp(k)

4: q(k+1) = w(k) + βkq(k)

5: x (k+1) = x (k) + αkp(k+1)

6: r (k+1) = r (k) − αkq
(k+1) ⇒ check converдence : |r (k+1) |

7: u(k+1) = M−1r (k+1)

8: w(k+1) = Au(k+1)

9: γk+1 = (r (k+1),u(k+1))
10: δk+1 = (w(k+1),u(k+1))
11: βk+1 = γk+1/γk
12: αk+1 = γk+1/(δk+1 − βk+1γk+1/αk)
13: end for

The pipelined method [2] reduces communications overhead by
overlapping global collective communications and computations.

Algorithm 3 shows Preconditioned Pipeined CGmethod [2]. This
method is derived from Algorithm 2.

In pipelined CG [2], collective communication for dot products
can be overlapped with heavier computations, such as SpMV and
preconditioning. In the original CG algorithm (Algorithm1), dot
products (αk = ρk/(p(k),q(k)) in line-4, and ρk+1 = (r (k+1),u(k+1))
in line-8) are used in the next lines (line-5 and line-9), while they are
used after in SpMV and preconditioning in the pipelined algorithm.
δk = (p(k),q(k)) is defined in line-3, and it it used in line-5, therefore
computing of δk can be overlapped with z(k) = M−1q(k) in line-4.
γk+1 = (r (k+1),u(k+1)) is defined in line-9, and it is used in line-11
afterw(k+1) = Au(k+1) in line-10.

Asynchronous collective communication (e.g., MPI_Iallreduce)
supported in MPI-3 is effective for such procedures.

In [16], the authors implemented pipelined CG to the original
GeoFEM/Cube with ICCG and ASDD using up to 12,288 cores
(384 nodes) of the Reedbush-U system [17] with Intel® Xeon® E5-
2695v4 (code name: Broadwell-EP) CPUs using Intel® MPI 2017. Fig.
4 compares the original and pipelined CGmethod for strong scaling.
Pipelined CG provides much better scalability than the original CG.
Pipelined CG is effective in the very limited case of strong scaling,
where the problem size per MPI process is very small.

Algorithm 3 Preconditioned Pipelined Conjugate Gradient
Method [2]

1: r (0) = b−Ax (0);u(0) = M−1r (0);p(0) = u(0);q(k) = Ap(k);w(0) =
Au(0); α0 = (r (0),u(0))/(w(0),u(0)); β0 = 0; γ0 = (r (0),u(0))

2: for k = 0, 1, . . . , until convergence do:
3: δk = (p(k),q(k))
4: z(k) = M−1q(k)

5: αk = γk/δk
6: x (k+1) = x (k) + αkp(k)

7: r (k+1) = r (k) − αkq
(k) ⇒ check converдence : |r (k+1) |

8: u(k+1) = u(k) − αkz
(k)

9: γk+1 = (r (k+1),u(k+1))
10: w(k+1) = Au(k+1)

11: βk+1 = γk+1/γk
12: p(k+1) = u(k+1) + βk+1p(k)

13: q(k+1) = w(k+1) + βk+1q(k)

14: end for

0

2000

4000

6000

8000

10000

0 2048 4096 6144 8192 10240 12288

Sp
ee

d-
U

p

CORE#

Original CG
Pipelined CG
Ideal

Figure 4: Effects of pipelined CG [16] for GeoFEM/Cube
with ICCG and ASDD using up to 12,288 cores (384 nodes)
of Reedbush-U [16] and strong scaling; total problem size:
28,311,552 DOF

Finally, Algorithm 4 shows Preconditioned Gropp’s CG method
[2][18]. While this method is similar to Algorithm 3, computations
are smaller than those of Algorithm 3. Dot products in line-3 and
line-4 (γk , δk) are overlapped with preconditioning in line-5 and
SpMV in line-6.

In the present work, following four algorithms for the conjugate
gradient method are evaluated. Each method includes one SpMV

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

(Sparse Matrix Vector Multiply), one preconditioning and three dot
products for each iteration. Number of DAXPY ’s (constant times a
vector plus a vector (axpy) in double-precision) in each method as
follows. 8 DAXPY’s in a iteration of Pipelined CG (Alg.3), while it
is 3 in the original CG (Alg.1):

• Algorithm 1: Original CG (3 DAXPY’s in one iteration) [11]
• Algorithm 2: Chronopoulos/Gear CG (4 DAXPY’s) [15]
• Algorithm 3: Pipelined CG (8 DAXPY’s) [2]
• Algorithm 4: Gropp’s CG (5 DAXPY’s) [2][18]

Algorithm 4 Preconditioned Gropp’s Conjugate Gradient Method
[2][18]

1: r (0) = b − Ax (0); u(0) = M−1r (0); w(0) = Au(0); z(0) = q(0) =
s(0) = p(0) = 0

2: for k = 0, 1, . . . , until convergence do:
3: γk = (r (k),u(k))
4: δk = (w(k),u(k))
5: m(k) = M−1w(k)

6: n(k) = Am(k)

7: if k > 0 then
8: βk = γk/γk−1;αk = γk/(δk − βkγk/αk−1)
9: else
10: β0 = 0; αk = γk/δk
11: end if
12: z(k+1) = n(k) + βkz(k)

13: s(k+1) =m(k) + βks(k)

14: q(k+1) = w(k) + βkq(k)

15: p(k+1) = u(k) + βkp(k)

16: x (k+1) = x (k) + αkp(k)

17: r (k+1) = r (k) − αkq
(k) ⇒ check converдence : |r (k+1) |

18: u(k+1) = u(k) − αks
(k)

19: w(k+1) = w(k) − αkz
(k)

20: end for

3 TARGET HARDWARE (OAKFOREST-PACS,
OFP)

The Oakforest-PACS system (OFP) [4] is the premiere supercom-
puter system at the Joint Center for Advanced High-Performance
Computing (JCAHPC) [4] , which was established by the University
of Tokyo and University of Tsukuba. The system consists of 8,208
nodes of Intel Xeon Phi 7250 (code name: Knights Landing, or KNL),
and Intel® Omni-Path Architecture (Intel® OPA) provides a 100 Gbps
interconnection in a fat-tree topology with full bisection bandwidth.
Each Xeon Phi 7250 node is built using 68 modified Atom® (code
name: Silvermont) cores running at 1.4 GHz, and the memory unit
consists of 96 GB of DDR4 RAM and 16 GB of stacked 3DMCDRAM,
which can be utilized as an L3 cache or high-bandwidth memory.
Each core has two 512-bit vector units and supports AVX-512 SIMD
instructions. Each core can host four threads (i.e., 272 overall logical
CPUs on the entire chip) and is equipped with 2 512-bit floating-
point vector ALU. The total theoretical computational performance
is 25 PFLOPS, and the system achieved 13.55 PFLOPS on the HPL
benchmark. In the present work, only MCDRAMwas used for mem-
ory in the flat/quadrant mode on the OFP. Intel’s compiler and MPI

library (2018) were used. Table 1 summarizes the specifications of
each node of OFP.

Table 1: Summary of the performance of single node of the
Oakforest-PACS(OFP)

Architecture Intel Xeon Phi 7250
(Knights Landing)

Frequency(GHz) 1.40

Core # /CPU (socket) (Maximum
Effective Thread #)

68 (272)

Peak Performance (GFLOPS) 3,046.4

Memory Size (GB) MCDRAM:16,DDR4:96

Memory Bandwidth (GB/sec) MCDRAM:490 [20],
DDR4:84

Compiler & MPI Library Intel® Parallel Studio 2019
XE, Intel MPI 2019

4 ASYNCHRONOUS PROGRESS CONTROL
4.1 Overview
MPI Non-blocking communication in application thread (e.g. for
MPI_Isend) is expected to run asynchronously. To do that, progress
thread is required if MPI communication is not completely offloaded.
But turning on the progress thread (e.g. for MPI_test) requires
MPI_THREAD_MULTIPLE. But in most case, MPI progress thread is
not practically used due to poor MPI performance due to serializa-
tion around one queue for all threads, thread switching overhead,
and process-wideMPI objectsmanagement overhead. Because those
restrictions are closely related with MPI 3.1 standard (defined as
"threads are not separately addressable: a rank in a send or receive
call identifies a process, not a thread”). Those history and practices
are well summarized in [21]. To overcome such restrictions, Intel
MPI 2019 developed new asynchronous progress design, which is
based on MPICH asynchronous design. From Intel MPI version
2019, it supports the new asynchronous progress threads that users
to manage communication in parallel with application’s computa-
tion to achieve better communication and computation overlapping.
Asynchronous progress control on the Intel MPI has a full support
for MPI point-to-point operations, blocking collectives, and a partial
support for non-blocking collectives (MPI_Ibcast, MPI_Ireduce,
and MPI_Iallreduce).

Setting the I_MPI_ASYNC_PROGRESS_PIN environment variable
on the Intel MPI allows to control a pinning of the asynchronous
progress threads to logical processor cores. By using this feature 1,
we can provide separate dedicated cores for asynchronous progress
threads.

4.2 Core Configuration
By default, Intel MPI allocates cpu core resource to the asynchro-
nous progress threads from last logical core. For the 68 cores Intel
1To enable asynchronous progress control on the Intel MPI, environment variable
I_MPI_ASYNC_PROGRESS=on, after loading release_mt environment, is required.

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 98 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous Progress Control HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan

Xeon Phi processor, it has 272 logical cores so the default pinning
values are from 271 to 264 in the case of 8 MPI processes and 8 asyn-
chronous progress threads, for example. It depends on application
but there are several ways to allocate logical cores for asynchro-
nous progress threads on the many core processor. For simplicity
on the GeoFEM application, we fixed the number of MPI process
as 8 and used 8 OpenMP threads per MPI process. Total 64 logical
core by using same number of physical core for better GeoFEM
performance (1 hardware thread per physical core used).

We exclude first two physical and last two physical cores of the
Xeon Phi fromGeoFEM computation by using environment variable
I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=0,1,68,69,136,137,204,205
in order to avoid first core (logical cores 0,68,136, and 204) which
is affected by OS noise and jitters. Logical cores from 2 to 65 are
used for GeoFEM computation. Fig. 5 illustrates such situation
as experimental setup. We have tested 5 different mapping of 8
asynchronous progress threads (1 progress thread per MPI process)
in addition to the case with asynchronous progress control. First
method (Fig. 6) is using default setup of Intel MPI which uses from
logical core 268 to 271. Second method (Fig. 7) is using first two
physical cores (logical core 0,1,68,69,136,137,204 and 205). Since
first two cores are not used by computation, we can allocate 8 log-
ical cores by 2 free physical cores.Third method (Fig. 8) is using
last two physical cores (66,67,134,135,202,203,270 and 271). This
method is basically same as second method but it is not affected
by OS noise and jitters. Forth method (Fig. 9) is using first two
and last two cores (0,1,68,69,66,67,134 and 135). This method is
using all 4 free physical core to provide 8 asynchronous progress
threads. Last method (Fig. 10) is using same physical core as MPI
process (138,146,154,162,170,178,186 and 192). This method does
not use any additional physical core for asynchronous progress
threads and use other hardware thread (e.g. hardware thread #2) on
the same physical core of MPI process. For example, logical core 2
(hardware thread #0 on the physical core 2) is used for MPI process
0, and logical core 138 (hardware thread #2 on the physical core 2)
is used one asynchronous progress thread. Since using same phys-
ical core for MPI communication and computation, this method
is expected to have better cache hit and to reduce internal data
transfer during overlapping. Table 2 is the list of core numbers for
I_MPI_ASYNC_PROGRESS_PIN.

Table 2: Summary of mapping method of asynchronous
progress thread

Mapping method I_MPI_ASYNC_PROGRESS_PIN=

#0. Without asynchronous thread N/A (I_MPI_ASYNC_PROGRESS=off)

#1. Intel MPI default (271,270,269,268,267,266,265,264)

#2. First 2 physical cores 0,1,68,69,136,137,204,205

#3. Last 2 physical cores 66,67,134,135,202,203,270,271

#4. First 2 and last 2 cores 0,1,68,69,66,67,134,135

#5. Using other hardware thread
on same core 138,146,154,162,170,178,186,192

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation thread

Figure 5: Figure of core mapping method #0 on Xeon Phi
processor

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 6: Figure of core mapping method #1 on Xeon Phi
processor

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 7: Figure of core mapping method #2 on Xeon Phi
processor

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 8: Figure of core mapping method #3 on Xeon Phi
processor

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 9: Figure of core mapping method #4 on Xeon Phi
processor

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 10: Figure of core mapping method #5 on Xeon Phi
processor

4.3 Experiments of various mapping methods
on 512 node

We evaluated which mapping method is best for GeoFEM by using
smaller test case on smaller cluster size. We set a problem size of
GeoFEM as (256, 128, 128) for 512 node test as smaller proxy of
full (512, 256, 256) size, which is equivalent to 100,663,296 DOFs.
We investigate all method from #0 to #5 on the 512 node by using
best performing number during 5 executions for each algorithm.
Figure 11 shows relative performance of algorithm 4:Gropp’s CG
which is using MPI_Iallreduce. Except mapping method #2, all
methods of asynchronous progress control enabled shows better
performance than method #0. Method #4 is best performing core
configuration with 37% improvement. While method #1 and #5
need only free logical cores, method #3 and #4 need more hardware
resource as free physical cores. Method #4 needs 2 more physical
cores than Method #3. It is reasonable results that more hard ware
resource gives more performance improvement. We are not sure
why method #2 showed poor performance. One possible reason is
OS noise and jitters. Message size of GeoFEM’s MPI_Iallreduce
is 16 byte. It is well known such small size global synchronized
collective communications are affected by OS noise and jitters [22].

1.00
0.73

2.40

0.68 0.63 0.75

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Method
#0

Method
#1

Method
#2

Method
#3

Method
#4

Method
#5

No
rm

al
ize

d
tim

e
by

 M
et

ho
d

#0
Figure 11: Result of 512 node experiment. Method #0 to
#5 shows relative performance. Normalized by Method #0
(without asynchronous progress control).

5 IHK/MCKERNEL
This section gives a general overview of IHK/McKernel and de-
scribes developments targeted for asynchronous communication
threads on Oakforest-PACS.

5.1 Overview
The IHK/McKernel multi-kernel operating system is comprised of
two main components. Interface for Heterogeneous Kernels (IHK)
[7], a low-level software infrastructure, provides capabilities for
partitioning resources in a many-core environment (e.g., CPU cores
and physical memory) and it enables management of lightweight
kernels. McKernel is a lightweight co-kernel developed on top of
IHK. An overview of the multi-kernel architecture is depicted in
Fig. 12.

IHK is capable of allocating and releasing host resources dynam-
ically and no reboot of the host machine is required when altering
configuration. It is implemented as a collection of Linux kernel mod-
ules without any modifications to the Linux kernel itself, which
enables straightforward deployment of the multi-kernel stack on
a wide range of Linux distributions. Besides resource and LWK
management, IHK also facilitates an Inter-kernel Communication
(IKC) layer, which is used for implementing system call delegation
(discussed below).

McKernel has been developed from scratch and while it is de-
signed explicitly for high-performance computing workloads it
retains a Linux compatible application binary interface (ABI) so
that it can execute unmodified Linux binaries. There is no need
for recompiling applications or for any McKernel specific libraries.
McKernel implements only a small set of performance sensitive
system calls and the rest of the OS services are delegated to Linux.
Specifically, McKernel implements memory management, it sup-
ports processes and multi-threading, it has a simple round-robin
co-operative (tick-less) scheduler, and it supports standard POSIX
signaling. It also implements inter-process memory mappings and
it offers interfaces for accessing hardware performance counters.

For each OS process executed onMcKernel there is a process run-
ning on Linux, which we call the proxy-process. The proxy process’
main role is to assist system call offloading. Essentially, it provides
the execution context on behalf of the application so that offloaded
system calls can be invoked in Linux. For more information on
system call offloading, refer to [8]. The proxy process also provides
means for Linux to maintain various state information that would
have to be otherwise kept track of in the co-kernel. McKernel for
instance has no notion of file descriptors, but it simply returns
the number it receives from the proxy process during the execu-
tion of an open() system call. The actual set of open files (i.e., file
descriptor table, file positions, etc.) are managed by the Linux ker-
nel. Relying on the proxy process, McKernel provides transparent
access to Linux device drivers not only in the form of offloaded
system calls (e.g., through write() or ioctl()), but also via direct
device mappings. Details of the device mapping mechanism has
been described elsewhere [9].

5.2 Support for Asynchronous Progress
As shown in Fig. 12, IHK partitions CPU cores into Linux and light-
weight kernel (LWK) domains. Only the LWK CPUs are exposed to

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 99 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous Progress Control HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan

Xeon Phi processor, it has 272 logical cores so the default pinning
values are from 271 to 264 in the case of 8 MPI processes and 8 asyn-
chronous progress threads, for example. It depends on application
but there are several ways to allocate logical cores for asynchro-
nous progress threads on the many core processor. For simplicity
on the GeoFEM application, we fixed the number of MPI process
as 8 and used 8 OpenMP threads per MPI process. Total 64 logical
core by using same number of physical core for better GeoFEM
performance (1 hardware thread per physical core used).

We exclude first two physical and last two physical cores of the
Xeon Phi fromGeoFEM computation by using environment variable
I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=0,1,68,69,136,137,204,205
in order to avoid first core (logical cores 0,68,136, and 204) which
is affected by OS noise and jitters. Logical cores from 2 to 65 are
used for GeoFEM computation. Fig. 5 illustrates such situation
as experimental setup. We have tested 5 different mapping of 8
asynchronous progress threads (1 progress thread per MPI process)
in addition to the case with asynchronous progress control. First
method (Fig. 6) is using default setup of Intel MPI which uses from
logical core 268 to 271. Second method (Fig. 7) is using first two
physical cores (logical core 0,1,68,69,136,137,204 and 205). Since
first two cores are not used by computation, we can allocate 8 log-
ical cores by 2 free physical cores.Third method (Fig. 8) is using
last two physical cores (66,67,134,135,202,203,270 and 271). This
method is basically same as second method but it is not affected
by OS noise and jitters. Forth method (Fig. 9) is using first two
and last two cores (0,1,68,69,66,67,134 and 135). This method is
using all 4 free physical core to provide 8 asynchronous progress
threads. Last method (Fig. 10) is using same physical core as MPI
process (138,146,154,162,170,178,186 and 192). This method does
not use any additional physical core for asynchronous progress
threads and use other hardware thread (e.g. hardware thread #2) on
the same physical core of MPI process. For example, logical core 2
(hardware thread #0 on the physical core 2) is used for MPI process
0, and logical core 138 (hardware thread #2 on the physical core 2)
is used one asynchronous progress thread. Since using same phys-
ical core for MPI communication and computation, this method
is expected to have better cache hit and to reduce internal data
transfer during overlapping. Table 2 is the list of core numbers for
I_MPI_ASYNC_PROGRESS_PIN.

Table 2: Summary of mapping method of asynchronous
progress thread

Mapping method I_MPI_ASYNC_PROGRESS_PIN=

#0. Without asynchronous thread N/A (I_MPI_ASYNC_PROGRESS=off)

#1. Intel MPI default (271,270,269,268,267,266,265,264)

#2. First 2 physical cores 0,1,68,69,136,137,204,205

#3. Last 2 physical cores 66,67,134,135,202,203,270,271

#4. First 2 and last 2 cores 0,1,68,69,66,67,134,135

#5. Using other hardware thread
on same core 138,146,154,162,170,178,186,192

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation thread

Figure 5: Figure of core mapping method #0 on Xeon Phi
processor

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 6: Figure of core mapping method #1 on Xeon Phi
processor

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 7: Figure of core mapping method #2 on Xeon Phi
processor

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 8: Figure of core mapping method #3 on Xeon Phi
processor

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 9: Figure of core mapping method #4 on Xeon Phi
processor

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

Hardware thread #0 0 1 2 3 4 … 10 … 65 66 67

Hardware thread #1 68 69 70 71 72 78 133 134 135

Hardware thread #2 136 137 138 139 140 146 201 202 203

Hardware thread #3 204 205 206 207 208 214 269 270 271

MPI process #0 MPI process #1 …

Computation threadAsynchronous progress thread

Figure 10: Figure of core mapping method #5 on Xeon Phi
processor

4.3 Experiments of various mapping methods
on 512 node

We evaluated which mapping method is best for GeoFEM by using
smaller test case on smaller cluster size. We set a problem size of
GeoFEM as (256, 128, 128) for 512 node test as smaller proxy of
full (512, 256, 256) size, which is equivalent to 100,663,296 DOFs.
We investigate all method from #0 to #5 on the 512 node by using
best performing number during 5 executions for each algorithm.
Figure 11 shows relative performance of algorithm 4:Gropp’s CG
which is using MPI_Iallreduce. Except mapping method #2, all
methods of asynchronous progress control enabled shows better
performance than method #0. Method #4 is best performing core
configuration with 37% improvement. While method #1 and #5
need only free logical cores, method #3 and #4 need more hardware
resource as free physical cores. Method #4 needs 2 more physical
cores than Method #3. It is reasonable results that more hard ware
resource gives more performance improvement. We are not sure
why method #2 showed poor performance. One possible reason is
OS noise and jitters. Message size of GeoFEM’s MPI_Iallreduce
is 16 byte. It is well known such small size global synchronized
collective communications are affected by OS noise and jitters [22].

1.00
0.73

2.40

0.68 0.63 0.75

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Method
#0

Method
#1

Method
#2

Method
#3

Method
#4

Method
#5

No
rm

al
ize

d
tim

e
by

 M
et

ho
d

#0

Figure 11: Result of 512 node experiment. Method #0 to
#5 shows relative performance. Normalized by Method #0
(without asynchronous progress control).

5 IHK/MCKERNEL
This section gives a general overview of IHK/McKernel and de-
scribes developments targeted for asynchronous communication
threads on Oakforest-PACS.

5.1 Overview
The IHK/McKernel multi-kernel operating system is comprised of
two main components. Interface for Heterogeneous Kernels (IHK)
[7], a low-level software infrastructure, provides capabilities for
partitioning resources in a many-core environment (e.g., CPU cores
and physical memory) and it enables management of lightweight
kernels. McKernel is a lightweight co-kernel developed on top of
IHK. An overview of the multi-kernel architecture is depicted in
Fig. 12.

IHK is capable of allocating and releasing host resources dynam-
ically and no reboot of the host machine is required when altering
configuration. It is implemented as a collection of Linux kernel mod-
ules without any modifications to the Linux kernel itself, which
enables straightforward deployment of the multi-kernel stack on
a wide range of Linux distributions. Besides resource and LWK
management, IHK also facilitates an Inter-kernel Communication
(IKC) layer, which is used for implementing system call delegation
(discussed below).

McKernel has been developed from scratch and while it is de-
signed explicitly for high-performance computing workloads it
retains a Linux compatible application binary interface (ABI) so
that it can execute unmodified Linux binaries. There is no need
for recompiling applications or for any McKernel specific libraries.
McKernel implements only a small set of performance sensitive
system calls and the rest of the OS services are delegated to Linux.
Specifically, McKernel implements memory management, it sup-
ports processes and multi-threading, it has a simple round-robin
co-operative (tick-less) scheduler, and it supports standard POSIX
signaling. It also implements inter-process memory mappings and
it offers interfaces for accessing hardware performance counters.

For each OS process executed onMcKernel there is a process run-
ning on Linux, which we call the proxy-process. The proxy process’
main role is to assist system call offloading. Essentially, it provides
the execution context on behalf of the application so that offloaded
system calls can be invoked in Linux. For more information on
system call offloading, refer to [8]. The proxy process also provides
means for Linux to maintain various state information that would
have to be otherwise kept track of in the co-kernel. McKernel for
instance has no notion of file descriptors, but it simply returns
the number it receives from the proxy process during the execu-
tion of an open() system call. The actual set of open files (i.e., file
descriptor table, file positions, etc.) are managed by the Linux ker-
nel. Relying on the proxy process, McKernel provides transparent
access to Linux device drivers not only in the form of offloaded
system calls (e.g., through write() or ioctl()), but also via direct
device mappings. Details of the device mapping mechanism has
been described elsewhere [9].

5.2 Support for Asynchronous Progress
As shown in Fig. 12, IHK partitions CPU cores into Linux and light-
weight kernel (LWK) domains. Only the LWK CPUs are exposed to

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 100 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous Progress Control HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan

Memory

IHK co-kernelIHK Linux

Delegator
module

Proxy process

CPU CPUCPU CPU… …
McKernel

Linux

HPC Application

System
daemon

Kernel
daemon

Interrupt

System call

System
call

Partition ParAAon

CPU CPU

Figure 12: Architectural overview of IHK/McKernel

application running on McKernel, e.g., on the Xeon Phi processor
used in this study only 256 logical CPU cores from the overall 272
are visible in McKernel. In addition, McKernel renumbers CPUs
and provides an automatic process pinning mechanism that inte-
grates with MPI to ease the burden on users for dealing with CPU
numbering related issues.

With respect to asynchronous progress threads, the main chal-
lenge that had to be addressed in McKernel was the enablement of
additional CPU cores in LWK without directly exposing them to
computation threads of the application. For this purpose McKer-
nel’s internal CPU management code as well as the process pinning
mechanism has been enhanced for asynchronous progress aware-
ness. Specifically, CPU cores dedicated to auxiliary threads are kept
transparent from application code and MPI progress threads are
pinned automatically to those CPUs. We use the second tile of the
Xeon Phi and pin one progress thread per logical CPU on each core.

6 NUMERICAL EXPERIMENTS
6.1 Performance results on Linux (measured in

2019)
Since method #4 is the best core mapping so we measured real
large problem size up to 4096 node by using asynchronous progress
thread with method #4 in addition to method #0 as a baseline. First
measurement was done on May 2019 by using Intel tools version
2019 Update 1. We fixed the problem size as (512, 256, 256), which
has 100,663,296 DOFs, and performed strong scaling measurements.
Fig. 13a-14b show bar graphs as best performing numbers during
5 executions on each run, which have also error bars as worst
performing numbers of 5 runs. Detailed performance numbers are
also listed on the Table 7 in the appendix as a reference.

Since Alg. 1-4 do not have global asynchronous MPI calls
(MPI_Iallreduce), but using MPI_Allreduce, it is not related with
asynchronous progress setups, essentially. Fig. 13a-14b have mea-
surement results for those algorithms marked as "Linux non async
in 2019". We can see performance improvement (or decreasing CG
Loop time) with growing the number of node from 128 to 2,048

node. From 2,048 to 4,096 node, we are seeing saturation of perfor-
mance or worse performance by poor scaling. These performance
saturations are derived by time increase of MPI_Allreduce on the
large number of node executions. For example, by profiling on 2048
node, total time of MPI_Allreduce calls for Alg. 1 is 59% of total
CG Loop time while it is 15% on 128 node. It is what we would
like to hide or overlap into computation by using asynchronous
progress threads.

Performance of the original CG (Alg.1) saturates, as number of
nodes is more than 2,048. On the contrast, Chronopoulos/Gear algo-
rithm (Alg.2) keeps scalability up to 4,096 nodes, and much better
than Alg.1, because communication overhead by MPI_Allreduce is
reduced. Pipelined CG (Alg.3) and Gropp’s CG (Alg.4) are generally
slower than Alg.1, because the amount of computations per each it-
eration is larger than Alg.1. Alg.3i and Alg.4i with MPI_Iallreduce
are also slower, but both of them are much faster than Alg.1, and
competitive with Alg.2. The reason of this improvement is not clear,
while MPI_Iallreduce may reduce the communication overhead
at 4,096 nodes.

Effects of asynchronous progress threads are significant with
more than 512 nodes, although performance of Alg.3i is not scaled
at 4,096 nodes. Generally, the results show Alg.3i and Alg.4i provide
much better scalability thanAlg.1 by combination of MPI_Iallreduce
and asynchronous progress threads. Fig. 14a-14b have the result of
asynchronous progress threads for the Alg. 3i and 4i, which have
asynchronous global MPI calls as MPI_Iallreduce. We can com-
pare performance "Linux no async in 2019" and "Linux async in
2019" on Fig. 14a and 14b, respectively. We are seeing significant
performance improvement on Alg. 4i while Alg. 3i was expected to
have similar performance improvement by overlapping, but result
of Alg. 3i showed smaller performance improvement than Alg. 4i. It
is not clear why it shows such behavior. Table 3 show summarized
performance improvement results which have comparison of origi-
nal non asynchronous algorithm (Alg. 3 and 4) and asynchronous
versions with asynchronous progress control (Alg. 3i and 4i). We
successfully got up to 19% and 38% improvements for Alg. 3 to 3i
and Alg. 4 to 4i, respectively, by overlapping effect of asynchronous
progress control.

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

0

2

4

6

8

10

12

14

16

128 256 512 1024 2048 4096

CG
 L

oo
p

tim
e

[s
ec

]

Number of Node

Alg. 1
Linux non async in 2019 Linux non async in 2021

McKernel non async in 2021

(a) Algorithm 1

0

2

4

6

8

10

12

14

16

128 256 512 1024 2048 4096

CG
 L

oo
p

tim
e

[s
ec

]

Number of Node

Alg. 2
Linux non async in 2019 Linux non async in 2021

McKernel non async in 2021

(b) Algorithm 2

Figure 13: Results without asynchronous progress on Linux and McKernel

0

2

4

6

8

10

12

14

16

128 256 512 1024 2048 4096

CG
 L

oo
p

tim
e

[s
ec

]

Number of Node

Alg. 3 (non async) and 3i (async)
Linux non async in 2019 Linux async in 2019

Linux non async in 2021 Linux async in 2021

McKernel non async in 2021 McKernel async in 2021

(a) Algorithms 3 and 3i

0

2

4

6

8

10

12

14

16

128 256 512 1024 2048 4096

CG
 L

oo
p

tim
e

[s
ec

]

Number of Node

Alg. 4 (non async) and 4i (async)
Linux non async in 2019 Linux async in 2019

Linux non async in 2021 Linux async in 2021

McKernel non async in 2021 McKernel async in 2021

(b) Algorithms 4 and 4i

Figure 14: Results comparing synchronous and asynchronous progress for algorithms 4 and 5 on Linux and McKernel

We can see growing size of error bars for all algorithms on top of
"Linux no async in 2019" and "Linux async in 2019" in Fig. 13a-14b
with increasing the number of node. In [5][6], we examined the
impact of the IHK/McKernel [10], and seeing stable measurement
results (small error bars) on large-scale systems by reducing OS
noise and communication overhead. In the next section, we will dis-
cuss the efforts which we try applying IHK/McKernel for GeoFEM
with asynchronous progress control.

6.2 Performance results on Linux (measured in
2021)

Since McKernel was required some modifications as described in
Section 5, we needed revisited Linux measurements with newer ver-
sion of environments including newer versions of BIOS, Firmware,
OS, Interconnect driver (IFS), Parallel file system (Lustre) driver,

Table 3: Performance improvement of introducing overlaps
by MPI_Iallreduce and asynchronous progress control on
Linux (measured in 2019)

Node Alg. 3 non asyc to 3i Alg. 4 non async to 4i
with async with async

128 1.03 1.06
256 1.04 1.11
512 1.05 1.20
1024 1.06 1.25
2048 1.08 1.34
4096 1.19 1.38

macro task software (e.g. scheduler) and MPI library to get new
baseline after 2 years. We used same method #4 as the best core

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 101 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous Progress Control HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan

Memory

IHK co-kernelIHK Linux

Delegator
module

Proxy process

CPU CPUCPU CPU… …
McKernel

Linux

HPC Application

System
daemon

Kernel
daemon

Interrupt

System call

System
call

Partition ParAAon

CPU CPU

Figure 12: Architectural overview of IHK/McKernel

application running on McKernel, e.g., on the Xeon Phi processor
used in this study only 256 logical CPU cores from the overall 272
are visible in McKernel. In addition, McKernel renumbers CPUs
and provides an automatic process pinning mechanism that inte-
grates with MPI to ease the burden on users for dealing with CPU
numbering related issues.

With respect to asynchronous progress threads, the main chal-
lenge that had to be addressed in McKernel was the enablement of
additional CPU cores in LWK without directly exposing them to
computation threads of the application. For this purpose McKer-
nel’s internal CPU management code as well as the process pinning
mechanism has been enhanced for asynchronous progress aware-
ness. Specifically, CPU cores dedicated to auxiliary threads are kept
transparent from application code and MPI progress threads are
pinned automatically to those CPUs. We use the second tile of the
Xeon Phi and pin one progress thread per logical CPU on each core.

6 NUMERICAL EXPERIMENTS
6.1 Performance results on Linux (measured in

2019)
Since method #4 is the best core mapping so we measured real
large problem size up to 4096 node by using asynchronous progress
thread with method #4 in addition to method #0 as a baseline. First
measurement was done on May 2019 by using Intel tools version
2019 Update 1. We fixed the problem size as (512, 256, 256), which
has 100,663,296 DOFs, and performed strong scaling measurements.
Fig. 13a-14b show bar graphs as best performing numbers during
5 executions on each run, which have also error bars as worst
performing numbers of 5 runs. Detailed performance numbers are
also listed on the Table 7 in the appendix as a reference.

Since Alg. 1-4 do not have global asynchronous MPI calls
(MPI_Iallreduce), but using MPI_Allreduce, it is not related with
asynchronous progress setups, essentially. Fig. 13a-14b have mea-
surement results for those algorithms marked as "Linux non async
in 2019". We can see performance improvement (or decreasing CG
Loop time) with growing the number of node from 128 to 2,048

node. From 2,048 to 4,096 node, we are seeing saturation of perfor-
mance or worse performance by poor scaling. These performance
saturations are derived by time increase of MPI_Allreduce on the
large number of node executions. For example, by profiling on 2048
node, total time of MPI_Allreduce calls for Alg. 1 is 59% of total
CG Loop time while it is 15% on 128 node. It is what we would
like to hide or overlap into computation by using asynchronous
progress threads.

Performance of the original CG (Alg.1) saturates, as number of
nodes is more than 2,048. On the contrast, Chronopoulos/Gear algo-
rithm (Alg.2) keeps scalability up to 4,096 nodes, and much better
than Alg.1, because communication overhead by MPI_Allreduce is
reduced. Pipelined CG (Alg.3) and Gropp’s CG (Alg.4) are generally
slower than Alg.1, because the amount of computations per each it-
eration is larger than Alg.1. Alg.3i and Alg.4i with MPI_Iallreduce
are also slower, but both of them are much faster than Alg.1, and
competitive with Alg.2. The reason of this improvement is not clear,
while MPI_Iallreduce may reduce the communication overhead
at 4,096 nodes.

Effects of asynchronous progress threads are significant with
more than 512 nodes, although performance of Alg.3i is not scaled
at 4,096 nodes. Generally, the results show Alg.3i and Alg.4i provide
much better scalability thanAlg.1 by combination of MPI_Iallreduce
and asynchronous progress threads. Fig. 14a-14b have the result of
asynchronous progress threads for the Alg. 3i and 4i, which have
asynchronous global MPI calls as MPI_Iallreduce. We can com-
pare performance "Linux no async in 2019" and "Linux async in
2019" on Fig. 14a and 14b, respectively. We are seeing significant
performance improvement on Alg. 4i while Alg. 3i was expected to
have similar performance improvement by overlapping, but result
of Alg. 3i showed smaller performance improvement than Alg. 4i. It
is not clear why it shows such behavior. Table 3 show summarized
performance improvement results which have comparison of origi-
nal non asynchronous algorithm (Alg. 3 and 4) and asynchronous
versions with asynchronous progress control (Alg. 3i and 4i). We
successfully got up to 19% and 38% improvements for Alg. 3 to 3i
and Alg. 4 to 4i, respectively, by overlapping effect of asynchronous
progress control.

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

0

2

4

6

8

10

12

14

16

128 256 512 1024 2048 4096

CG
 L

oo
p

tim
e

[s
ec

]

Number of Node

Alg. 1
Linux non async in 2019 Linux non async in 2021

McKernel non async in 2021

(a) Algorithm 1

0

2

4

6

8

10

12

14

16

128 256 512 1024 2048 4096

CG
 L

oo
p

tim
e

[s
ec

]

Number of Node

Alg. 2
Linux non async in 2019 Linux non async in 2021

McKernel non async in 2021

(b) Algorithm 2

Figure 13: Results without asynchronous progress on Linux and McKernel

0

2

4

6

8

10

12

14

16

128 256 512 1024 2048 4096

CG
 L

oo
p

tim
e

[s
ec

]

Number of Node

Alg. 3 (non async) and 3i (async)
Linux non async in 2019 Linux async in 2019

Linux non async in 2021 Linux async in 2021

McKernel non async in 2021 McKernel async in 2021

(a) Algorithms 3 and 3i

0

2

4

6

8

10

12

14

16

128 256 512 1024 2048 4096

CG
 L

oo
p

tim
e

[s
ec

]

Number of Node

Alg. 4 (non async) and 4i (async)
Linux non async in 2019 Linux async in 2019

Linux non async in 2021 Linux async in 2021

McKernel non async in 2021 McKernel async in 2021

(b) Algorithms 4 and 4i

Figure 14: Results comparing synchronous and asynchronous progress for algorithms 4 and 5 on Linux and McKernel

We can see growing size of error bars for all algorithms on top of
"Linux no async in 2019" and "Linux async in 2019" in Fig. 13a-14b
with increasing the number of node. In [5][6], we examined the
impact of the IHK/McKernel [10], and seeing stable measurement
results (small error bars) on large-scale systems by reducing OS
noise and communication overhead. In the next section, we will dis-
cuss the efforts which we try applying IHK/McKernel for GeoFEM
with asynchronous progress control.

6.2 Performance results on Linux (measured in
2021)

Since McKernel was required some modifications as described in
Section 5, we needed revisited Linux measurements with newer ver-
sion of environments including newer versions of BIOS, Firmware,
OS, Interconnect driver (IFS), Parallel file system (Lustre) driver,

Table 3: Performance improvement of introducing overlaps
by MPI_Iallreduce and asynchronous progress control on
Linux (measured in 2019)

Node Alg. 3 non asyc to 3i Alg. 4 non async to 4i
with async with async

128 1.03 1.06
256 1.04 1.11
512 1.05 1.20
1024 1.06 1.25
2048 1.08 1.34
4096 1.19 1.38

macro task software (e.g. scheduler) and MPI library to get new
baseline after 2 years. We used same method #4 as the best core

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 102 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous Progress Control HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan

mapping with same large problem size up to 4096 node by using
asynchronous progress control in addition to method #0 as a base-
line similarly in 2019. This second measurement was done on Nov.
2021 by using Intel tools version 2019 Update 9. All performance
numbers are listed on the Table 8 in the appendix as a reference.

Results marked as "Linux non async in 2021" on Fig. 13a-14b
and "Linux async in 2021" on Fig. 14a-14b show the performance
of result of re-measurements by using newer software and driver
versions. We can see similar performance behaviors in Fig. 13a-14b
without asynchronous progress control while seeing smaller run
to run variances (smaller error bars). On Fig. 14a-14b, we can see
worse performance results of "Linux non async in 2021" case than
"Linux non async in 2019". We are not sure why MPI_Iallreduce
version’s GeoFEM (Alg. 3i and 4i) show poor performance than 2019.
Since almost of all software environments are changing from 2019,
it is very difficult to identify the root cause. Also due to security
fixes and patches in two years, we can not revert entire system
same as 2019.

We can compare the effect of asynchronous thread control, simi-
larly, "Linux async in 2019" case and "Linux async in 2021" case on
Fig. 14a-14b. Alg. 3i and 4i show better performance by using asyn-
chronous progress threads up to 512 and 1024 node, respectively.
But on the larger node counts, we are seeing worse performance
results by using synchronous progress threads. It is unexpected
results that effective on smaller node count while negative impact
on larger node count. In 2019, asynchronous progress threads were
effective with growing node count up to 4,096. As same reasons
as non async 2021 results, we are not sure and have difficulties to
identify the root causes.

Table 4 show summarized performance improvement and degra-
dation results which have comparison of original non asynchronous
algorithm (Alg. 3 and 4) and asynchronous versions with asynchro-
nous progress control (Alg. 3i and 4i). As described in section 6.1,
We got up to 19% and 38% improvements for Alg. 3 to 3i and Alg.
4 to 4i, respectively in 2019 but we can see the positive effect of
asynchronous progress control on fewer node count only.

Table 4: Performance improvement and degradation of in-
troducing overlaps by MPI_Iallreduce and asynchronous
progress control on Linux (measured in 2021). Note: Below
1.00 means negative effect.

Node Alg. 3 non asyc to 3i Alg. 4 non async to 4i
with async with async

128 1.01 1.40
256 0.98 1.26
512 0.95 0.96
1024 0.87 0.82
2048 0.70 0.61
4096 0.53 0.43

6.3 Performance results on McKernel
(measured in 2021)

For simplicity and little implementation cost, the modification for
asynchronous progress control on McKernel is intended to use first

two physical cores only while it is expected more improvement by
allocating 4 unused physical cores to McKernel. 8 logical threads
provided by first two physical cores handle asynchronous progress
control in addition to IHK Linux for this time. It is almost equivalent
to Fig. 7 or the method #2. All other measurements conditions are
same as Linux in 2021.

Through Fig. 13a to 14b, which have case of non asynchronous
progress control, we can see a little performance improvement on
larger node count while almost same on lower node count. But we
can clearly see error bars on McKernel are significantly smaller
than that of Linux. This stable and less variant results are one of
the benefits by McKernel. Similarly on Fig. 14a-14b, we can see
much smaller error bars on McKernel, which are marked on top of
"McKernel non async in 2021" and "McKernel async in 2021" bars.

Table 5 shows summarized performance improvement on McK-
ernel without asynchronous progress control, compared with best
Linux result without asynchronous progress control of 2019 and
2021. All other measurement results show better performance than
Linux due to less noisy and low overhead nature of McKernel. For
example, We can see up to 20% performance improvement on 2,048
node and 6% on 4,096 node for the Alg. 4. All performance numbers
are listed on the Table 9 in the appendix as a reference.

Next, discussing asynchronous progress control onMcKernel. Ta-
ble 6 show summarized performance improvement and degradation
results which have comparison of original non asynchronous algo-
rithm (Alg. 3 and 4) and asynchronous versions with asynchronous
progress control (Alg. 3i and 4i). We cannot see beneficial improve-
ment on Alg.3i. With Alg. 4i, asynchronous progress threads give
2-3% performance improvement from 128 node to 1,024 node.

Table 5: Performance improvement on McKernel vs. best of
Linux in 2019 and 2021. Note: Below 1.00 means negative ef-
fect.

Speedup Alg. 1 Alg. 2 Alg. 3 Alg. 4
128 1.01 1.01 1.01 1.01
256 1.02 1.02 1.03 1.02
512 1.07 1.06 1.05 1.07
1024 1.10 1.09 1.07 1.08
2048 1.15 1.13 1.15 1.20
4096 1.01 1.06 1.07 1.06

7 RELATEDWORK
Non-blocking collective operations were introduced in MPI sev-
eral years ago [23]. However, only a few recent studies have ex-
plored thread placement strategies for asynchronous communica-
tion progress thread placement for non-blocking collective opera-
tions. Ohlmann et. al. presented Intel MPI’s asynchronous progress
control with an application case study demonstrating the benefits
of progress thread placement [25].

Denis et. al. studied progress thread placement on many-core
CPUswith a special focus on symmetricmultithreading. Similarly to
our findings, they also reported that running asynchronous progress
on SMT threads of an application core can degrade performance
due to cache effects in intranode communication [24].

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

Table 6: Performance improvement and degradation of in-
troducing overlaps by MPI_Iallreduce and asynchronous
progress control on McKernel (measured in 2021). Note: Be-
low 1.00 means negative effect.

Node Alg. 3 non asyc to 3i Alg. 4 non async to 4i
with async with async

128 1.00 1.02
256 0.98 1.03
512 0.95 1.02
1024 0.93 1.02
2048 0.91 0.92
4096 0.79 0.84

8 CONCLUSION AND FUTUREWORK
We have demonstrated that the asynchronous progress control is
very effective with appropriate algorithm changes for CG solvers
to overlap global synchronization and computation. We achieved
38% performance improvement on 4,096 node.

Although re-measurements on Linux in 2021 are not stable and
worse than what measured in 2019 on larger node count more
than 1,024, we are also able to confirm McKernel realized noise less
and stable measurement in addition to performance improvement
on GeoFEM. In most case, McKernel provided better performance
especially on large node count even if compared with 2019 Linux
results. Especially for 2,048 and 4,096 nodes, we got 20% and 6%
improvements, respectively.

Furthermore, we have modified McKernel for asynchronous
progress control and applied to real GeoFEM applications. From 128
node to 512 nodes, at least, we are able to see performance improve-
ment by the combination of McKernel and asynchronous progress
control. Though the effect is limited up to 1,024 node counts, we
got at most 2-3% performance improvement from 128 node.

Work is ongoing and it is expected that we will run these per-
formance experiments again after whole system tuning on Linux
and McKernel to address the 2021 year’s performance degradation
than that of 2019. In the case of physical 4 cores allocation to IHK
kernel for asynchronous progress control on McKernel will also be
a future work. Furthermore, to investigate an effect on SMT threads
more could lead to efficient use of asynchronous progress control
for more MPI ranks per node or pure MPI parallelism situation
without OpenMP threading.

ACKNOWLEDGMENTS
This work is supported by JSPS Grant-in-Aid for Scientific Research
(S) (19H05662), and by Joint Usage/Research Center for Interdisci-
plinary Large-scale Information Infrastructures (jh20037-NAH, jh20041-
NAH). Authors would like to thank Yoshio Sakaguchi, Nobuteru
Mizoe and Toshiro Saiki from Fujitsu.

REFERENCES
[1] Intel’s Asynchronous Progress Control: https://www.intel.com/content/www/

us/en/develop/documentation/mpi-developer-guide-linux/top/additional-
supported-features/asynchronous-progress-control.html

[2] Ghysels, P. and W. Vanroose, Hiding global synchronization latency in the pre-
conditioned Conjugate Gradient algorithm, Parallel Computing 40-7, 224-238,
2014

[3] Nakajima, K., Parallel Iterative Solvers of GeoFEM with Selective Blocking Pre-
conditioning for Nonlinear Contact Problems on the Earth Simulator, ACM/IEEE
Proceedings of SC 2003, 2003

[4] Joint Center for Advanced High Performance Computing (JCAHPC): http://jcahpc.
jp/

[5] Nakajima, K., Gerofi, B., Ishikawa, Y., Horikoshi, M., Parallel Multigrid Methods
on Manycore Clusters with IHK/McKernel, IEEE Proceedings of 10th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA 2019)
in conjunction with SC19, Denver, CO, 2019

[6] Nakajima, K., Gerofi, B., Ishikawa, Y., Horikoshi, M., Efficient Parallel Multigrid
Method on Intel Xeon Phi Clusters, ACM Proceedings of IXPUG HPC Asia 2021,
2021

[7] Taku Shimosawa, Balazs Gerofi, Masamichi Takagi, Gou Nakamura, Tomoki Shi-
rasawa, Yuji Saeki, Masaaki Shimizu, Atsushi Hori and Yutaka Ishikawa, Interface
for Heterogeneous Kernels: A Framework to Enable Hybrid OS Designs targeting
High Performance Computing on Manycore Architectures, 21th Intl. Conference
on High Performance Computing HiPC, 2014

[8] Balazs Gerofi, Akio Shimada, Atsushi Hori and Yutaka Ishikawa, Partially Sepa-
rated Page Tables for Efficient Operating System Assisted Hierarchical Memory
Management on Heterogeneous Architectures, 13th Intl. Symposium on Cluster,
Cloud and Grid Computing CCGRID, 2013

[9] Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Guo Nakamura, Tomoki Shirasawa
and Yutaka Ishikawa, On the Scalability, Performance Isolation and Device Driver
Transparency of the IHK/McKernel Hybrid Lightweight Kernel, IEEE International
Parallel and Distributed Processing Symposium IPDPS, 2016

[10] Gerofi, B, Riesen, R., Takagi, M., Boku, T., Nakajima, K., Ishikawa, Y., Wisniewski,
R.W., Performance and Scalability of Lightweight Multi-kernel Based Operating
Systems, IEEE Proceedings of IPDPS 2018, 116-125, 2018

[11] Saad, Y., Iterative Methods for Sparse Linear Systems (2nd Edition), SIAM, 2003
[12] Smith, B., P. Bjostad, and W. Gropp, Domain Decomposition, Parallel Multilevel

Methods for Elliptic Partial Differential Equations, Cambridge Press, 1996
[13] Demmel, J., Hoemmen, M., Mohiyuddin, M., Yelick, K., Avoiding communication

in sparse matrix computations, IEEE Proceedings of 22nd International Symposium
on Parallel and Distributed Processing, 2008 (IPDPS 2008), 2008

[14] Nakajima, K.and Ogita, T., Evaluations of Stability of Parallel Conjugate Gradient
Methods based on Pipelined Algorithmss, IPSJ SIG Technical Reports 2018-HPC-
167-26 (in Japanese), 2018

[15] Chronopoulos, A.T. and Gear, C.W., s-Step iterative methods for symmetric linear
systems. Journal of Computational and Applied Mathematics. v25 i2. 153-168

[16] Hanawa, T., Nakajima, K., Ohshima, S., Hoshino, T., Ida, A., Performance Evalua-
tion of Pipelined CG Method, IPSJ SIG Technical Report, Vol.2016-HPC-157, No.6,
2016 (in Japanese)

[17] Supercomputing Research Division, Information Technology Center, The Uni-
versity of Tokyo (ITC/U.Tokyo): http://www.cc.u-tokyo.ac.jp/

[18] Gropp, W., Update on libraries for blue waters, https://wgropp.cs.illinois.edu/bib/
talks/tdata/2011/Stream-nbcg.pdf

[19] Horikoshi, M., Nakajima, K., Gerofi, B., Ishikawa, Y., Parallel Preconditioned
Itertative Solvers on Oakforest-PACS, 28th Seminar of MEPA (Algorithms for
Matrix / Eigenvalue Problems and their Applications, JSIAM (Japan Society for
Industrial and Applied Mathematics)), 2019

[20] STREAM Benchmark: https://www.cs.virginia.edu/stream/
[21] Amit Ruhela, Hari Subramoni, Sourav Chakraborty, Mohammadreza Bayatpour,

Pouya Kousha and Dhabaleswar K.(DK) Panda, Efficient design for MPI asynchro-
nous progress without dedicated resources, Parallel Computing 85,13-26, 2019

[22] Horikoshi, M., Meadows L., Elken T., Sivakumar P., Mascarenhas, M., Erwin J.,
Durnov D., Sannikov A., Hanawa T., Boku, T., Scaling collectives on large clusters
using Intel(R) architecture processors and fabric, ACM Proceedings of IXPUG
HPC Asia 2018, 2018

[23] Hoefler T., Kambadur P., Graham R.L., Shipman G., Lumsdaine A. (2007) A Case
for Standard Non-blocking Collective Operations. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface. EuroPVM/MPI 2007. Lecture
Notes in Computer Science, vol 4757. Springer, Berlin, Heidelberg

[24] Alexandre Denis, Julien Jaeger, Hugo Taboada, Progress Thread Placement for
Overlapping MPI Non- Blocking Collectives using Simultaneous Multi-Threading.
COLOC: 2nd workshop on data locality, in conjuction with Euro-Par 2018, 2018

[25] Sebastian Ohlmann, Fabio Baruffa, Markus Rampp, Overlapping com-
munication and computation using the Intel MPI library’s asynchronous
progress control, IXPUG Meeting 2020, https://www.ixpug.org/resources/
overlapping-communication-and-computation-using-the-intel-mpi-library-s-
asynchronous-progress-control

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 103 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous Progress Control HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan

mapping with same large problem size up to 4096 node by using
asynchronous progress control in addition to method #0 as a base-
line similarly in 2019. This second measurement was done on Nov.
2021 by using Intel tools version 2019 Update 9. All performance
numbers are listed on the Table 8 in the appendix as a reference.

Results marked as "Linux non async in 2021" on Fig. 13a-14b
and "Linux async in 2021" on Fig. 14a-14b show the performance
of result of re-measurements by using newer software and driver
versions. We can see similar performance behaviors in Fig. 13a-14b
without asynchronous progress control while seeing smaller run
to run variances (smaller error bars). On Fig. 14a-14b, we can see
worse performance results of "Linux non async in 2021" case than
"Linux non async in 2019". We are not sure why MPI_Iallreduce
version’s GeoFEM (Alg. 3i and 4i) show poor performance than 2019.
Since almost of all software environments are changing from 2019,
it is very difficult to identify the root cause. Also due to security
fixes and patches in two years, we can not revert entire system
same as 2019.

We can compare the effect of asynchronous thread control, simi-
larly, "Linux async in 2019" case and "Linux async in 2021" case on
Fig. 14a-14b. Alg. 3i and 4i show better performance by using asyn-
chronous progress threads up to 512 and 1024 node, respectively.
But on the larger node counts, we are seeing worse performance
results by using synchronous progress threads. It is unexpected
results that effective on smaller node count while negative impact
on larger node count. In 2019, asynchronous progress threads were
effective with growing node count up to 4,096. As same reasons
as non async 2021 results, we are not sure and have difficulties to
identify the root causes.

Table 4 show summarized performance improvement and degra-
dation results which have comparison of original non asynchronous
algorithm (Alg. 3 and 4) and asynchronous versions with asynchro-
nous progress control (Alg. 3i and 4i). As described in section 6.1,
We got up to 19% and 38% improvements for Alg. 3 to 3i and Alg.
4 to 4i, respectively in 2019 but we can see the positive effect of
asynchronous progress control on fewer node count only.

Table 4: Performance improvement and degradation of in-
troducing overlaps by MPI_Iallreduce and asynchronous
progress control on Linux (measured in 2021). Note: Below
1.00 means negative effect.

Node Alg. 3 non asyc to 3i Alg. 4 non async to 4i
with async with async

128 1.01 1.40
256 0.98 1.26
512 0.95 0.96
1024 0.87 0.82
2048 0.70 0.61
4096 0.53 0.43

6.3 Performance results on McKernel
(measured in 2021)

For simplicity and little implementation cost, the modification for
asynchronous progress control on McKernel is intended to use first

two physical cores only while it is expected more improvement by
allocating 4 unused physical cores to McKernel. 8 logical threads
provided by first two physical cores handle asynchronous progress
control in addition to IHK Linux for this time. It is almost equivalent
to Fig. 7 or the method #2. All other measurements conditions are
same as Linux in 2021.

Through Fig. 13a to 14b, which have case of non asynchronous
progress control, we can see a little performance improvement on
larger node count while almost same on lower node count. But we
can clearly see error bars on McKernel are significantly smaller
than that of Linux. This stable and less variant results are one of
the benefits by McKernel. Similarly on Fig. 14a-14b, we can see
much smaller error bars on McKernel, which are marked on top of
"McKernel non async in 2021" and "McKernel async in 2021" bars.

Table 5 shows summarized performance improvement on McK-
ernel without asynchronous progress control, compared with best
Linux result without asynchronous progress control of 2019 and
2021. All other measurement results show better performance than
Linux due to less noisy and low overhead nature of McKernel. For
example, We can see up to 20% performance improvement on 2,048
node and 6% on 4,096 node for the Alg. 4. All performance numbers
are listed on the Table 9 in the appendix as a reference.

Next, discussing asynchronous progress control onMcKernel. Ta-
ble 6 show summarized performance improvement and degradation
results which have comparison of original non asynchronous algo-
rithm (Alg. 3 and 4) and asynchronous versions with asynchronous
progress control (Alg. 3i and 4i). We cannot see beneficial improve-
ment on Alg.3i. With Alg. 4i, asynchronous progress threads give
2-3% performance improvement from 128 node to 1,024 node.

Table 5: Performance improvement on McKernel vs. best of
Linux in 2019 and 2021. Note: Below 1.00 means negative ef-
fect.

Speedup Alg. 1 Alg. 2 Alg. 3 Alg. 4
128 1.01 1.01 1.01 1.01
256 1.02 1.02 1.03 1.02
512 1.07 1.06 1.05 1.07
1024 1.10 1.09 1.07 1.08
2048 1.15 1.13 1.15 1.20
4096 1.01 1.06 1.07 1.06

7 RELATEDWORK
Non-blocking collective operations were introduced in MPI sev-
eral years ago [23]. However, only a few recent studies have ex-
plored thread placement strategies for asynchronous communica-
tion progress thread placement for non-blocking collective opera-
tions. Ohlmann et. al. presented Intel MPI’s asynchronous progress
control with an application case study demonstrating the benefits
of progress thread placement [25].

Denis et. al. studied progress thread placement on many-core
CPUswith a special focus on symmetricmultithreading. Similarly to
our findings, they also reported that running asynchronous progress
on SMT threads of an application core can degrade performance
due to cache effects in intranode communication [24].

HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima

Table 6: Performance improvement and degradation of in-
troducing overlaps by MPI_Iallreduce and asynchronous
progress control on McKernel (measured in 2021). Note: Be-
low 1.00 means negative effect.

Node Alg. 3 non asyc to 3i Alg. 4 non async to 4i
with async with async

128 1.00 1.02
256 0.98 1.03
512 0.95 1.02
1024 0.93 1.02
2048 0.91 0.92
4096 0.79 0.84

8 CONCLUSION AND FUTUREWORK
We have demonstrated that the asynchronous progress control is
very effective with appropriate algorithm changes for CG solvers
to overlap global synchronization and computation. We achieved
38% performance improvement on 4,096 node.

Although re-measurements on Linux in 2021 are not stable and
worse than what measured in 2019 on larger node count more
than 1,024, we are also able to confirm McKernel realized noise less
and stable measurement in addition to performance improvement
on GeoFEM. In most case, McKernel provided better performance
especially on large node count even if compared with 2019 Linux
results. Especially for 2,048 and 4,096 nodes, we got 20% and 6%
improvements, respectively.

Furthermore, we have modified McKernel for asynchronous
progress control and applied to real GeoFEM applications. From 128
node to 512 nodes, at least, we are able to see performance improve-
ment by the combination of McKernel and asynchronous progress
control. Though the effect is limited up to 1,024 node counts, we
got at most 2-3% performance improvement from 128 node.

Work is ongoing and it is expected that we will run these per-
formance experiments again after whole system tuning on Linux
and McKernel to address the 2021 year’s performance degradation
than that of 2019. In the case of physical 4 cores allocation to IHK
kernel for asynchronous progress control on McKernel will also be
a future work. Furthermore, to investigate an effect on SMT threads
more could lead to efficient use of asynchronous progress control
for more MPI ranks per node or pure MPI parallelism situation
without OpenMP threading.

ACKNOWLEDGMENTS
This work is supported by JSPS Grant-in-Aid for Scientific Research
(S) (19H05662), and by Joint Usage/Research Center for Interdisci-
plinary Large-scale Information Infrastructures (jh20037-NAH, jh20041-
NAH). Authors would like to thank Yoshio Sakaguchi, Nobuteru
Mizoe and Toshiro Saiki from Fujitsu.

REFERENCES
[1] Intel’s Asynchronous Progress Control: https://www.intel.com/content/www/

us/en/develop/documentation/mpi-developer-guide-linux/top/additional-
supported-features/asynchronous-progress-control.html

[2] Ghysels, P. and W. Vanroose, Hiding global synchronization latency in the pre-
conditioned Conjugate Gradient algorithm, Parallel Computing 40-7, 224-238,
2014

[3] Nakajima, K., Parallel Iterative Solvers of GeoFEM with Selective Blocking Pre-
conditioning for Nonlinear Contact Problems on the Earth Simulator, ACM/IEEE
Proceedings of SC 2003, 2003

[4] Joint Center for Advanced High Performance Computing (JCAHPC): http://jcahpc.
jp/

[5] Nakajima, K., Gerofi, B., Ishikawa, Y., Horikoshi, M., Parallel Multigrid Methods
on Manycore Clusters with IHK/McKernel, IEEE Proceedings of 10th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA 2019)
in conjunction with SC19, Denver, CO, 2019

[6] Nakajima, K., Gerofi, B., Ishikawa, Y., Horikoshi, M., Efficient Parallel Multigrid
Method on Intel Xeon Phi Clusters, ACM Proceedings of IXPUG HPC Asia 2021,
2021

[7] Taku Shimosawa, Balazs Gerofi, Masamichi Takagi, Gou Nakamura, Tomoki Shi-
rasawa, Yuji Saeki, Masaaki Shimizu, Atsushi Hori and Yutaka Ishikawa, Interface
for Heterogeneous Kernels: A Framework to Enable Hybrid OS Designs targeting
High Performance Computing on Manycore Architectures, 21th Intl. Conference
on High Performance Computing HiPC, 2014

[8] Balazs Gerofi, Akio Shimada, Atsushi Hori and Yutaka Ishikawa, Partially Sepa-
rated Page Tables for Efficient Operating System Assisted Hierarchical Memory
Management on Heterogeneous Architectures, 13th Intl. Symposium on Cluster,
Cloud and Grid Computing CCGRID, 2013

[9] Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Guo Nakamura, Tomoki Shirasawa
and Yutaka Ishikawa, On the Scalability, Performance Isolation and Device Driver
Transparency of the IHK/McKernel Hybrid Lightweight Kernel, IEEE International
Parallel and Distributed Processing Symposium IPDPS, 2016

[10] Gerofi, B, Riesen, R., Takagi, M., Boku, T., Nakajima, K., Ishikawa, Y., Wisniewski,
R.W., Performance and Scalability of Lightweight Multi-kernel Based Operating
Systems, IEEE Proceedings of IPDPS 2018, 116-125, 2018

[11] Saad, Y., Iterative Methods for Sparse Linear Systems (2nd Edition), SIAM, 2003
[12] Smith, B., P. Bjostad, and W. Gropp, Domain Decomposition, Parallel Multilevel

Methods for Elliptic Partial Differential Equations, Cambridge Press, 1996
[13] Demmel, J., Hoemmen, M., Mohiyuddin, M., Yelick, K., Avoiding communication

in sparse matrix computations, IEEE Proceedings of 22nd International Symposium
on Parallel and Distributed Processing, 2008 (IPDPS 2008), 2008

[14] Nakajima, K.and Ogita, T., Evaluations of Stability of Parallel Conjugate Gradient
Methods based on Pipelined Algorithmss, IPSJ SIG Technical Reports 2018-HPC-
167-26 (in Japanese), 2018

[15] Chronopoulos, A.T. and Gear, C.W., s-Step iterative methods for symmetric linear
systems. Journal of Computational and Applied Mathematics. v25 i2. 153-168

[16] Hanawa, T., Nakajima, K., Ohshima, S., Hoshino, T., Ida, A., Performance Evalua-
tion of Pipelined CG Method, IPSJ SIG Technical Report, Vol.2016-HPC-157, No.6,
2016 (in Japanese)

[17] Supercomputing Research Division, Information Technology Center, The Uni-
versity of Tokyo (ITC/U.Tokyo): http://www.cc.u-tokyo.ac.jp/

[18] Gropp, W., Update on libraries for blue waters, https://wgropp.cs.illinois.edu/bib/
talks/tdata/2011/Stream-nbcg.pdf

[19] Horikoshi, M., Nakajima, K., Gerofi, B., Ishikawa, Y., Parallel Preconditioned
Itertative Solvers on Oakforest-PACS, 28th Seminar of MEPA (Algorithms for
Matrix / Eigenvalue Problems and their Applications, JSIAM (Japan Society for
Industrial and Applied Mathematics)), 2019

[20] STREAM Benchmark: https://www.cs.virginia.edu/stream/
[21] Amit Ruhela, Hari Subramoni, Sourav Chakraborty, Mohammadreza Bayatpour,

Pouya Kousha and Dhabaleswar K.(DK) Panda, Efficient design for MPI asynchro-
nous progress without dedicated resources, Parallel Computing 85,13-26, 2019

[22] Horikoshi, M., Meadows L., Elken T., Sivakumar P., Mascarenhas, M., Erwin J.,
Durnov D., Sannikov A., Hanawa T., Boku, T., Scaling collectives on large clusters
using Intel(R) architecture processors and fabric, ACM Proceedings of IXPUG
HPC Asia 2018, 2018

[23] Hoefler T., Kambadur P., Graham R.L., Shipman G., Lumsdaine A. (2007) A Case
for Standard Non-blocking Collective Operations. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface. EuroPVM/MPI 2007. Lecture
Notes in Computer Science, vol 4757. Springer, Berlin, Heidelberg

[24] Alexandre Denis, Julien Jaeger, Hugo Taboada, Progress Thread Placement for
Overlapping MPI Non- Blocking Collectives using Simultaneous Multi-Threading.
COLOC: 2nd workshop on data locality, in conjuction with Euro-Par 2018, 2018

[25] Sebastian Ohlmann, Fabio Baruffa, Markus Rampp, Overlapping com-
munication and computation using the Intel MPI library’s asynchronous
progress control, IXPUG Meeting 2020, https://www.ixpug.org/resources/
overlapping-communication-and-computation-using-the-intel-mpi-library-s-
asynchronous-progress-control

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 104 -

Exploring Communication-Computation Overlap in Parallel
Iterative Solvers on Manycore CPUs using Asynchronous Progress Control HPCAsia 2022 Workshop, January 11–14, 2022, Virtual Event, Japan

A APPENDIX
A.1 Table of measurement data in 2019

Table 7: Results on Linux (measured in 2019). Alg. 3i and
4i used asynchronous progress threads while others did not
use. From 128 to 4,096 nodes.

Alg.1 [sec] Alg.2 [sec] Alg.3 [sec] Alg.3i [sec] Alg.4 [sec] Alg.4i [sec]
128 1.39E+01 1.37E+01 1.42E+01 1.38E+01 1.42E+01 1.34E+01
256 9.21E+00 9.01E+00 9.34E+00 9.01E+00 9.39E+00 8.47E+00
512 6.37E+00 6.10E+00 6.24E+00 5.95E+00 6.40E+00 5.33E+00
1024 5.00E+00 4.69E+00 4.75E+00 4.49E+00 4.91E+00 3.93E+00
2048 4.51E+00 4.16E+00 4.22E+00 3.89E+0 4.58E+00 3.41E+00
4096 4.50E+00 4.03E+00 4.91E+00 4.14E+00 4.55E+00 3.29E+00

A.2 Tables of measurement data in 2021

Table 8: Results on Linux (measured in 2021). Alg. 3i and
4i used asynchronous progress threads while others did not
use. From 128 to 4,096 nodes.

Alg.1 [sec] Alg.2 [sec] Alg.3 [sec] Alg.3i [sec] Alg.4 [sec] Alg.4i [sec]
128 1.39E+01 1.38E+01 1.43E+01 1.42E+01 1.43E+01 1.35E+01
256 9.15E+00 9.06E+00 9.35E+00 9.58E+00 9.47E+00 8.92E+00
512 6.49E+00 6.24E+00 6.43E+00 6.78E+00 6.56E+00 6.08E+00
1024 4.91E+00 4.68E+00 4.80E+00 5.50E+00 4.88E+00 4.79E+00
2048 5.09E+00 4.74E+00 4.82E+00 6.88E+00 5.05E+00 6.27E+00
4096 3.60E+00 3.34E+00 3.36E+00 6.33E+00 3.54E+00 5.89E+00

Table 9: Results onMcKernel (measured in 2021). Alg. 3i and
4i used asynchronous progress threads while others did not
use. From 128 to 4,096 nodes.

Alg.1 [sec] Alg.2 [sec] Alg.3 [sec] Alg.3i [sec] Alg.4 [sec] Alg.4i [sec]
128 1.38E+01 1.36E+01 1.40E+01 1.40E+01 1.40E+01 1.37E+01
256 9.01E+00 8.81E+00 9.10E+00 9.32E+00 9.20E+00 8.95E+00
512 5.96E+00 5.77E+00 5.96E+00 6.24E+00 5.99E+00 5.85E+00
1024 4.45E+00 4.29E+00 4.44E+00 4.78E+00 4.52E+00 4.43E+00
2048 3.91E+00 3.68E+00 3.66E+00 4.00E+00 3.82E+00 4.13E+00
4096 3.56E+00 3.16E+00 3.14E+00 3.99E+00 3.36E+00 3.99E+00

スーパーコンピューティングニュース� Vol.�24,�No.3　2022- 105 -

