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Features of Multigrid (MG) Methods
Scalable multilevel method for solving linear equat ions
GMG (Geometrical Multigrid) and AMG (Algebraic Multigrid)
Number of iterations until convergence for multigri d method is 

kept constant as the problem size changes, Comp. Ti me = O(N)
The parallel multigrid method is expected to be one of the most 

powerful tools on exa-scale systems. 

Applied to rather well-conditioned 
problems (e.g. Poisson’s eqn’s)
 Many sophisticated methods for real-world 

applications are under development (next 
presentation)

 MG is scalable, but there are many 
things to be done towards exascale
computing 
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• The parallel multigrid method is expected to play an important role in 
scientific computing on exa-scale supercomputer systems for solving 
large-scale linear equations with sparse coefficient matrices. 

Overview (1/3)
6

• Because solving sparse linear systems is a very memory-bound process, 
efficient method for storage of coefficient matrices is a crucial issue. 

• In the previous works, authors implemented Sliced ELL method to 
parallel conjugate gradient solvers with multigrid preconditioning (MGCG) 
for the application on 3D groundwater flow through heterogeneous 
porous media (pGW3D-FVM), and excellent performance has been 
obtained on large-scale multicore/manycore clusters. 



• Poisson’s equation
– Randomly distributed water conductivity (λ)

– λ=10-5~10+5, Average: 1.00

• Conjugate Gradient preconditioned by Multigrid (MGC G)
– Geometric Multigrid (GMG): Octree-based
– IC(0) Smoother, V-Cycle
– Additive Schwartz Domain Decomposition

• Sliced ELL for Storage of Sparse Matrices
• Fortran90, MPI/OpenMP

• 3D Groundwater Flow via Heterogeneous Porous Media
• Finite-Volume Method on Structured Cubic Voxel Mesh

pGW3D-FVM: Target Application
[KN IEEE ICPADS 2014] (Best Paper Award)

( )( ) qzyx =∇⋅∇ φλ ,,
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CRS ELL

Sliced
ELLNakajima, K., Optimization of Serial and Parallel Communications for Parallel 

Geometric Multigrid Method, Proceedings of the 20th IEEE International Conference 
for Parallel and Distributed Systems (ICPADS 2014) 25-32, Hsin-Chu, Taiwan, 2014



Effects of Sliced -ELL 
on MGCG/pGW3D -FVM
[KN ICPADS 2014]

• Fujitsu PRIMEHPC FX10
– Weak-Scalingup to 4,096-nodes，

655,536-cores
– max 17,179,869,184 DOF
– HB 8x2

• 1.9x performance@655,536-cores: 
(Sliced ELL+CGA) over CRS
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Nakajima, K., Optimization of Serial and Parallel Communications for Parallel Geometric Multigrid Method, Proceedings of 
the 20th IEEE International Conference for Parallel and Distributed Systems (ICPADS 2014) 25-32, Hsin-Chu, Taiwan, 2014
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• MGCG: Sparse Linear Solver
– Typical Memory-Bound Procedure
– Effects of Memory Access/Matrix Storage are significant

Very Scalable for Weak Scaling



• In the present work, authors introduced SELL-C-σ with double/single 
precision computing to the MGCG solver, and evaluated the performance 
of the solver with OpenMP/MPI hybrid parallel programing models on the 
Oakforest-PACS (OFP) system at JCAHPC using up to 2,048 nodes of 
Intel Xeon Phi . 

Overview (2/3)
9

• Because SELL-C- σ is suitable for wide-SIMD architecture, such as 
Xeon Phi, improvement of the performance over the s liced ELL was 
more than 35% for double precision and more than 45 % for single 
precision on OFP. 

• Finally, accuracy verification was conducted based on the method 
proposed by authors for solving linear equations wi th sparse 
coefficient matrices with M -property. 



• This is one of the first examples of SELL-C- σ applied to 
forward/backward substitutions in ILU-type smoother  of multigrid 
solver with double/single precision computing. 

• The effect of SELL-C- σ for computing with single precision (FP32) is 
very significant.

Overview (3/3)
10



• Background & Overview
– Multigtrid Methods
– Overview of Previous/Present Works

• SELL-C-σ with Double Precision Computing
• Computing in Double/Single Precision
• Accuracy Verification
• Summary
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Target System: Oakforest-PACS (OFP)

• Intel Xeon Phi (Knights Landing, KNL), OPA , Fujitsu
• 8,208 nodes, 25+PF, 22nd in TOP 500 (November 2020)
• Operated by JCAHPC (U.Tsukuba & U.Tokyo)
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Main Purpose of the Present Work: SELL -C-σ
13

CRS ELL Sliced ELL SELL-C-σ

C

σ

• Applying SELL-C- σ to MGCG Solvers in pGW3D-FVM
– Currently with Sliced ELL

• Sliced ELL and SELL-C-σ have been mostly applied to SpMV, or Gauss-
Seidel Iterative Solvers/Smoothers

• Implementation to 
Forward/Backward 
Substitution in ILU-type 
Smoothers is very difficult
– First example of Sliced ELL [KN 

IEEE ICPADS 2014]

– This is the first example of 
SELL-C-σ
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[Kreutzer, Hager, Iellein, 

SIAM SISC 2014]



Main Purpose of the Present Work: SELL -C-σ
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CRS ELL Sliced ELL SELL-C-σ

C

σ

• Applying SELL-C-σ to MGCG Solvers in pGW3D-FVM
– Currently with Sliced ELL

• Sliced ELL and SELL-C-σ have been mostly applied to SpMV, or Gauss-
Seidel Iterative Solvers/Smoothers

• Implementation to 
Forward/Backward 
Substitution in ILU-type 
Smoothers is very difficult
– First example of Sliced ELL 

[KN IEEE ICPADS 2014]
– This is the first example of 

SELL-C-σ SELL-2-8



Coalesced ，CM-RCM(2)
• CM-RCM with 2 colors: CM-RCM(2)

– Number of iterations will increase with 2-colors, compared to RCM (current method)
– Performance on OFP with multithreading is better with fewer colors

• Loop length

– Implementation of SELL-C-σ is easier than RCM 

• Coloring part is not parallelized, but implementation of CM-RCM(2) is easy  
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Red-Black ，2色のMC

64 32 63 30 60 26 55 20

31 62 29 59 25 54 19 48

61 28 58 24 53 18 47 12

27 57 23 52 17 46 11 41

56 22 51 16 45 10 40 6

21 50 15 44 9 39 5 36
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CM-RCM（2）, Coalesced



Forward Substitution: 2 nd Color of CM -RCM(2)
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Sliced-ELL
Row-wise

SCS-a (SELL-C-σ)
Row-wise

SCS-b (SELL-C- σ)
Column-wise

R
ow

Column

R
ow

Column

(a) Sliced ELL: Row-Wise 

!$omp parallel private (icol,…)
icol= NCOLORtot
(Operations)

!$omp do
do (Loops:Meshes: Row-Wise)
do (Loops:Non-Zero Off-Diag’s: j= 1, 6)

(Operations)
enddo
enddo

!$omp end parallel

(b) SELL-8-8/Row-Wise (SCS-a)

!$omp parallel private (icol,…)
icol= NCOLORtot
(Operations)

!$omp do
do (Loops:Threads: ip= 1, PEsmpTOT)
do (Loops:Blocks)

!$omp simd
do (Loops SIMD: k= 1, 8)
do (Loops:Non-Zero Off-Diag’s: j= 1, 6)

(Operations)
enddo
enddo

enddo
enddo

!$omp end parallel

(c) SELL-8-8/Column-Wise (SCS-b)

!$omp parallel private (icol,…)
icol= NCOLORtot
(Operations)

!$omp do
do (Loops:Threads: ip= 1, PEsmpTOT)
do (Loops:Blocks) 

!$omp simd
do (Loops SIMD: k= 1, 8)
(Operations:Substitutions-1)

enddo
do (Loops:Non-Zero Off-Diag’s: j= 1, 6)

!$omp simd
do (Loops SIMD: k= 1, 8)
(Operations)

enddo
enddo

!$omp simd
do (Loops SIMD: k= 1, 8)
(Operations:Substitutions-2)

enddo
enddo
enddo

!$omp end parallel

Row-Wise Column-Wise
More Expensive !!



Parallel Multigrid Methods
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Level=1

Level=2

Level=m-3

Level=m-2

Level=m-1

Level=m
Mesh # for
each MPI= 1 

Fine

Coarse

Communication Overhead
at Coarser Levels

Coarse grid solver on a 
single core (further MG)

Original Approach
[KN 2010]

Level=1

Level=2

Level=m-3

Fine

Coarse

• Communication overhead 
could be reduced 

• Coarse grid solver is more 
expensive than original 
approach.

• If process number is larger, 
this effect might be 
significant

Level=m-2

Coarse grid solver on 
a single MPI Process 
(multi-threaded, 
further MG)

Coarse Grid 
Aggregation (CGA)
[KN 2012]



Summary  of Configurations
• pGW3D-FVM，Weak Scaling

– CGA（Coarse Grid Aggregation）: Single Level
• Oakforest-PACS (OFP), ~2,048 nodes

– Flat，MC-DRAM only
– 64-cores on each node

• HB 4x16 (4-threads x 16-proc’s), HB 8x8

– Problem Size: 64x32x32 on each core (max: 8,589,934,592 DOF), Best for 5-
Runs, ε=10-12

• Comparison between (CRS, Sliced ELL) and SCS (SELL-C-σ, C=σ=8)
– 64-bit (Double Precision) x 8 = 512 bit 
– SCS: Switching to Sliced-ELL if the problem size is smaller than (C (=8)) for each 

color/thread
– Sliced ELL for Coarse Grid Solver of SCS
– 20% improvement is expected by SCS over Sliced ELL, based on preliminary 

results
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Results: Time for MGCG
8-nodes ，HB 4×16, 33,554,432 DOF

• Each Level of Smoothing
• Rest

– Coarser Level Smoothers
– CG except MG (SpMV etc.)
– Communication
– Coarse Grid Solver

• Improvement over CRS
– Sliced ELL：36.6%
– SCS-a：79.4%
– SCS-b：84.9% (C=8)
– SCS-b: 90.1% (C=128)

• Level-1 (Finest)
– 46.6%，101.3%，108.7%, 107.8%

• Sliced ELL⇒SCS
– SCS-a：31.4%
– SCS-b：35.4% (C=8)
– SCS-b: 39.2% (C=128)
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Weak Scaling: up to 2,048-nodes 
HB 4x16, Time for MGCG ，Down is Good
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Weak Scaling: up to 2,048-nodes 
SCS-b (C=σ=8)，Time for MGCG ，Down is Good
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• Background & Overview
– Multigtrid Methods
– Overview of Previous/Present Works

• SELL-C-σ with Double Precision Computing
• Computing in Double/Single Precision
• Accuracy Verification
• Summary
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Approximate Computing with 
Low/Adaptive/Trans Precision

• Mostly, scientific computing has been conducted using FP64 (double 
precision, DP)
– Sometimes, problems can be solved by FP32 (single precision, SP) or lower 

precision

• Lower precision may save time, energy and memory
• Approximate Computing

– Originally for image recognition etc. where accuracy is not necessarily 
required

– Also applied to numerical computations

• Computations by lower precision and by mixed precision may provide 
results with less accuracy

24



P3D: Steady State 3D Heat Conduction by FVM

• 7-point Stencil
• Heterogenous Material Property

– λ1/λ2 is proportional to the condition 
number of coefficient matrices

• Coefficient Matrix
– Sparse, SPD

• ICCG Solver
• Fortran 90 + OpenMP
• CM-RCM Reordering
• FP64 (Double), FP32 (Single), FP16 

(Half) (just for preconditioning)
25
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[Sakamoto et al. 2020]Results on Intel Xeon BDW λ1= λ2
N=1283, ■: CPU，■: Memory ，●：Time
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Target Platforms• Oakforest-PACS (OFP)
– Intel Xeon Phi (Knights Landing, KNL), Fujitsu
– IHK/McKernel
– 8,208 nodes, 25+PF, 22th in TOP 500 (Nov.2020)
– Operated by JCAHPC (U.Tsukuba & U.Tokyo)

• Oakbridge-CX (OBCX)
– Intel Platinum 8280 (Cascade Lake, CLX), Fujitsu
– 1,368 nodes (2,736 sockets), 6.61 PF, 69th in TOP 500 (Nov.2020)
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System Oakforest-PACS (OFP) Oakbridge-CX (OBCX) 

Name in this Paper OFP OBCX

Architecture Intel Xeon Phi 7250
(Knights Landing, KNL)

Intel Xeon Platinum 8280
(Cascade Lake, CLX)

Frequency (GHz) 1.40 2.70

Core #/CPU (socket) 68 28

CPU (socket) # per node 1 2

Peak Performance (GFLOPS) per 
node 3,046.4 4,838.4

Memory Size (GB) per node MCDRAM: 16
DDR4: 96 192

Memory Bandwidth/Socket
(GB/sec, STREAM Triad)

MCDRAM: 490 
DDR4: 84.5 202.0

Peak Performance per Core 
(GFLOPS) 44.8 86.4

Memory Bandwidth per Core
(GB/sec., STREAM Triad)

MCDRAM: 7.21 
DDR4: 1.24 3.61

Overview of Each Node (OFP & OBCX)



Time for MGCG: 
SCS-b (C=σ)
Normalized by 
SELL-8-8 (DP)
8-nodes 
OFP(HB 4x16), 
OBCX (6x8)
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Time for MGCG: 
SCS-b (C=σ)
Normalized by 
SELL-8-8 (DP)
8-nodes 
OFP(HB 4x16), 
OBCX (8x8)
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Down is Good



35

0.00

0.20

0.40

0.60

0.80

1.00

1.20

C=4 8 16 32 64 128 256 512 1024 2048

N
or

m
al

iz
ed

 T
im

e 
fo

r 
C

om
pu

ta
tio

n

OFP-Double OFP-Single

OBCX-Double OBCX-Single

DP⇒SP
• Iteration number 

does not change
• <0.1% relative error
• (SP/DP) time ratio

• 0.70 for OFP
• 0.55-0.60 for OBCX

Down is Good



Results: Time for MGCG
8-nodes ，OFP (HB 4×16)
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Time for MGCG, 8-nodes ，OFP (HB 4×16)
Improvement over CRS (MGCG solver, Level-1 of Smoot her)

37

Double Precision 
(FP64)

Single Precision
(FP32) 

Sliced ELL 36.6%, 46.6% 15.6%, 44.7%

SCS-a (C=σ=8) 79.4%, 101.3% 58.7%, 81.0%

SCS-b (C=σ=8) 84.9%, 108.7% 90.9 %, 152.2%

SCS-b (C=σ=128) 90.1%, 107.8% 137.5%, 174.9%
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Weak Scaling: up to 2,048-nodes of OFP 
(DP: C=σ=8, SP: C=σ=128)
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1.00

2.00

3.00

4.00

5.00

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

se
c.

Core #

HB 4x16-d
HB 4x16-s
HB 8x8-d
HB 8x8-sD

ow
n 

is
 G

oo
d



Weak Scaling: up to 2,048-nodes of OFP 
(DP: C=σ=8, SP: C=σ=128)
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Time for MGCG: SCS-b
DP: C=σ=8, SP: C=σ=128

Improvement over CRS
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Weak Scaling: up to 2,048-nodes of OFP, 
HB 4x16, Time for MGCG ，Down is Good
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FP64: C=σ=8 FP32: C=σ=128
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– Multigtrid Methods
– Overview of Previous/Present Works

• SELL-C-σ with Double Precision Computing
• Computing in Double/Single Precision
• Accuracy Verification
• Summary
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Approximate Computing with 
Low/Adaptive/Trans Precision

• Accuracy verification is important, especially for computation with 
lower/mixed precision.

• A lot of methods for accuracy verification have been developed for 
problems with dense matrices
– But very few examples for sparse matrices & H-matrices

• Generally speaking, processes for accuracy verification is very 
expensive
– Sophisticated Method needed

– Automatic Selection of Optimum Precision by Technology of AT (Auto Tuning)

• Accuracy Verification of Sparse Linear Solvers [Ogita, Nakajima 2019]
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New Algorithm for Verification 
[Ogita, Rump, Oishi 2005] [Ogita, Nakajima 2019]
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1. Solve a discretized linear system �� � �.

2. Solve a linear system �� � �.

3. Verify M-property of � using ��. (�� � ��� Ă ����� � �)

4. Compute � � �  ��� with an error bound.

 �̀: a computed residual,  ��: an error bound of �̀

5. Solve a linear system �� � �̀.

6. Compute an error bound using

�  �� � � �̀ � �
�� �� �̀  ��̀ �� �� ��

�  �  ��� �

�



Results: New Alg. for Verification (128 3)
[Ogita, Rump, Oishi 2005] [Ogita, Nakajima 2019]

45

1λ

1λ
2λN

Z

max0@z zφ = =

( ) 0fλ φ∇ ⋅ ∇ + =



Results on OBCX (Intel Xeon CXL) (1/2)
FP64，Accuracy Verification■ takes 10% longer
λ1/ λ2 =100~106，CRS，N=1283
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Results on OBCX (2/2)
Accuracy verification for FP32 
has failed, if λ1/ λ2 ≧104
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Accuracy Verification in pGW3D -FVM

• 1st Application of the New 
Verification Method [Ogita, 
Nakajima 2019] to Distributed 
Parallel Computing

• Two Cases on OFP (HB 8x8)
– Small: 128 meshes, 1-node 

– Large: 1,024x1,024x512 meshes, 
128 nodes

• DP only (SP failed in Accuracy 
Verification)
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Summary
50

• SELL-C-σ with double/single precision computing in the MGCG solver 
using up to 2,048 nodes of Intel Xeon Phi.

• Improvement of the performance by SELL-C-σ over the sliced ELL
– 35+% for DP, 45+% for SP on OFP.
– The effect of SELL-C-σ for computing with SP is very significant

• Accuracy Verification (Preliminary)
• The first example of SELL-C-σ applied to forward/backward substitutions 

in ILU-type smoother of multigrid solver with double/single precision 
computing.

• Future Works 
– SELL-C-σ for Coarse Grid Solver
– Improvement of Accuracy Verification


