

ISC HIGH PERFORMANCE 2021 DIGITAL

JUNE 24 - JULY 2, 2021 ISC-HPC.COM

Wisteria/BDEC-01 & h3-Open-BDEC: **Innovative Scientific Computing in the Exascale Era**

Kengo Nakajima

Information Technology Center The University of Tokyo

ISC High Performance 2021 Digital June 24 - July 2, 2021

Now operating 3 Systems !!

2,600+ users (55+% from outside of U.Tokyo)

- Reedbush (HPE, Intel BDW + NVIDIA P100 (Pascal))
 - Integrated Supercomputer Sys. for Data Analyses & Scientific Simulations
 - Jul.2016-Nov.2021 (Plan)
 - Our first GPU System, DDN IME (Burst Buffer)
 - Reedbush-U: CPU only, 420 nodes, 508 TF (Jul.2016~, retired June 2020)
 - Reedbush-H: 120 nodes, 2 GPUs/node: 1.42 PF (Mar.2017~Nov.2021)
 - Reedbush-L: 64 nodes, 4 GPUs/node: 1.43 PF (Oct.2017~Nov.2021)
- Oakforest-PACS (OFP) (Fujitsu, Intel Xeon Phi (KNL))
 - JCAHPC (U.Tsukuba & U.Tokyo)
 - 25 PF, #22 in 56th TOP 500 (November 2020) (#4 in Japan), Omni-Path Architecture, DDN IME (Burst Buffer), Sept.2016~Mar.2022
- Oakbridge-CX (OBCX) (Fujitsu, Intel Xeon Platinum 8280, CLX)
 - Massively Parallel Supercomputer System
 - 6.61 PF, #69 in 56th TOP 500, July 2019-June 2023
 - SSD's are installed to 128 nodes (out of 1,368)

Research Area based on CPU Hours (FY.2019) OBCX: October 2019~September 2020

HPCI Urgent Call for Fighting against COVID-19 in Japan (FY.2020)

by 8 SC Centers of Natl. Univ., AIST etc. 6 of 14 accepted projects use U.Tokyo's Systems

Syste **Project Name** ΡI m Fragment molecular orbital calculations on the Yuji Mochizuki (Rikkyo U.) main protease of COVID-19 Study on the evaluation of arrhythmogenic risk Toshiaki Hisada (UT Heart) OFP of COVID-19 candidate drugs Prediction of dynamical structure of Spike Yuji Sugita (RIKEN) protein of SARS-COVID19 Computer-assisted search for inhibitory agents Tyuji Hoshino (Chiba U.) for SARS-CoV-2 Prediction and Countermeasure for virus droplet Infection under Indoor Environment: Makoto Tsubokura (Kobe U.) OBCX Case studies for massively-parallel simulation on Fugaku Spreading of polydisperse droplets in a Marco Edoardo Rosti turbulent puff of saturated exhaled air (OIST)

[c/o Prof. Y. Mochizuki (Rikkto U.)]

[c/o Prof. M.Tsubokura (Kobe U.)]

Global Atmosphere-Ocean Coupled Simulations

Solid Earth & Earthquake Simulations

Simulation of Geologic CO₂ Storage

[c/o Dr. Hajime Yamamoto (Taisei Corporation)]

図-4 CO₂ 圧入後の地下水圧(全水頭換算)の分布(100年後)

CO

CO₂

x(m)

Injection Well 30 million DoF Yamamoto et al. (200 10km (b) DDC (Diffusion-Dissolution-Convection) -Highly non linear process model-Coprock (Low permeable seal) Native Groundwater (Brine) 6 million DoF (c) SPE 10 Model -Highly heterogeneous reservoir model-3.3 million DoF Original Reservior Model Christie and Blunt (2001) Oi et al. (2009) Audigane et al.(2011) CO, behavior (No upscaling) Yamamoto et al. (2013) *DOF: degrees of freedom

(a) Tokyo Bay Model

-Large scale hydro-geological model-

Real-Time Prediction of Severe Rainstorm by OFP

9

Society 5.0 & BDEC System

 We are developing an innovative method of computational science towards the Exascale Era/Society 5.0 by integration of (Simulation + Data + Learning (S+D+L)), where ideas of data science and machine learning are introduced to computational science

Society 5.0: the Cabinet Office of Japan

 Super Smart & Human-centered Society by Digital Innovation (IoT, Big Data, AI etc.) and by <u>Integration of Cyber Space &</u> Physical Space

Future of Supercomputing

- Various Types of Workloads
 - Computational Science & Engineering: Simulations
 - Big Data Analytics
 - AI, Machine Learning ...
- Integration/Convergence of (Simulation + Data + Learning) (S+D+L) is important towards Society 5.0: <u>AI for HPC</u>, <u>Sophiscated Simulation</u>
- Two Platforms are introduced in Kashiwa II Campus of the University of Tokyo (March-May 2021)
 BDEC: S + D + L
 - BDEC (Big Data & Extreme Computing): Batch
 - Data Platform (DP/mdx): Cloud-like, More Flexible/Interactive

mdx: s + U +

Society 5.0 & BDEC System

1000

13

- We are developing an innovative method of computational science towards the Exascale Era/Society 5.0 by integration of (Simulation + Data + Learning (S+D+L)), where ideas of data science and machine learning are introduced to computational science
- We are operating 3 supercomputer systems now, and introducing the BDEC (Big Data & Extreme Computing) System as the Platform for Integration of (S+D+L)
 - Wisteria/BDEC-01 with 33.1 PF

Supercomputers in ITC/U.Tokyo Information Technology Center, The University of Tokyo **FY11** 19 12 13 14 15 16 17 18 22 23 25 20 21 24 Oakbridge-CX Yayoi: Hitachi SR16000/M1 Massively Parallel Intel Deon CLX Supercomputer **IBM Power-7** 6.61 PFLOPS 54.9 TFLOPS, 11.2 TB System T2K Tokyc Manycore-based Large-Oakforest-PACS (OFP) (JCA HC) **OFP-II** Hitachi scale Supercomputer Fujitsu, Intel Xeon Phi (JCAHPC) 140TF, 31.3TI System, JCAHPC 25PFLOPS, 919.3TB Integrated Supercomputer Oakleaf-FX: Fujitsu PRIMEHPC FX **BDEC: Wisteria/BDEC-01** System for Simulation, Data SPÁRC64 IXfx A64FX+Intel Xeon Ice Lake/NVIDIA A100 and Learning 1.13 PFLOPS, 150 TB **33.1 PFLOPS Oakbridge-FX** mdx 136.2 TFLOPS, 18.4 TB Integrated Supercomputer System for **Reedbush-U/H, HPE** Data Analyses & Scientific Intel BDW + NVIDIA P100 Simulations **1.93 PFLOPS** Supercomputer System with **Reedbush-L HPE** Accelerators for Long-Term 1.43 PFLOPS Executions

Wisteria/BDEC-01

- Operation starts on May 14, 2021
- 33.1 PF, 8.38 PB/sec by <u>Fujitsu</u> – ~4.5 MVA with Cooling, ~360m²
- 2 Types of Node Groups
 - Hierarchical, Hybrid, Heterogeneous (h3)
 - Simulation Nodes: Odyssey
 - Fujitsu PRIMEHPC FX1000 (A64FX), 25.9 PF
 - 7,680 nodes (368,640 cores), Tofu-D
 - General Purpose CPU + HBM
 - Commercial Version of "Fugaku"
 - Data/Learning Nodes: Aquarius
 - Data Analytics & Al/Machine Learning
 - Intel Xeon Ice Lake + NVIDIA A100, 7.2PF
 - 45 nodes (90x Ice Lake, 360x A100), IB-HDR
 - Some of the DL nodes are connected to external resources directly
- File Systems: SFS (Shared/Large) + FFS (Fast/Small)

The 1st BDEC System (Big Data & Extreme Computing) Platform for Integration of (S+D+L)

Wisteria/BDEC-01

Platform for Integration of (S+D+L)

- Wisteria (紫藤)
 - "Legend of Princess Wisteria" at Lake Teganuma in Kashiwa
- Odyssey
 - Callsign of Apollo 13's Command Module (CM)
- Aquarius
 - Callsign of Apollo 13's Luna Module (LM)

h3-Open-BDEC on BDEC System

- We are developing an innovative method of computational science towards the Exascale Era/Society 5.0 by integration of (Simulation + Data + Learning (S+D+L)), where ideas of data science and machine learning are introduced to computational science
- We are operating 3 supercomputer systems now, and introducing the BDEC (Big Data & Extreme Computing) System, Wisteria/BDEC-01, with 33.1 PF as the Platform for Integration of (S+D+L)
- h3-Open-BDEC: Innovative Software Platform for Integration of (S+D+L) on the BDEC System, such as Wisteria/BDEC-01
 - 5-year project supported by Japanese Government through JSPS Grant-in-Aid for Scientific Research (S) since 2019
 - Leading-PI: Kengo Nakajima (The University of Tokyo)
 - Total Budget: 152.7M JPY= 1.41M USD

000

Members (Co-Pl's) of h3-Open-BDEC Project

Computer Science, Computational Science, Numerical Algorithms, Data Science, Machine Learning

- Kengo Nakajima (ITC/U.Tokyo, RIKEN), Leading-PI
- Takeshi Iwashita (Hokkaido U), Co-PI, Algorithms
- Hisashi Yashiro (NIES), Co-PI, Coupling, Utility
- Hiromichi Nagao (ERI/U.Tokyo), Co-PI, Data Assimilatic
- Takashi Shimokawabe (ITC/U.Tokyo), Co-PI, ML/hDDA
- Takeshi Ogita (TWCU), Co-PI, Accuracy Verification
- Takahiro Katagiri (Nagoya U), Co-PI, Appropriate Computing
- Hiroya Matsuba (ITC/U.Tokyo), Co-PI, Container

h3-Open-BDEC

Innovative Software Platform for Integration of (S+D+L) on BDEC

21

h3-Open-BDEC				
New Principle for Computations Numerical Alg./Library	Simulation + Data + Learning App. Dev. Framework	Integration + Communications+ Utilities Control & Utility		
h3-Open-MATH Algorithms with High- Performance, High Reliability & Mixed/Adaptive Precision	h3-Open-APP: Simulation Application Development	h3-Open-SYS Control & Integration		
h3-Open-VER Verification of Accuracy	h3-Open-DATA: Data Data Science	h3-Open-UTIL Utilities for Large-Scale Computing		
h3-Open-AT Automatic Tuning	h3-Open-DDA: Learning Data Driven Approach	Hierarchical, Hybrid, Heteregeneous h3-Open-BDEC Big Data & Extreme Computing		

h3-Open-BDEC: Two Significant Innovations

- Methods for Numerical Analysis with High-Performance/High-Reliability/Power-Saving based on the New Principle of Computing by
 - ✓ Adaptive Precision
 - ✓ Accuracy Verification
 - ✓ Automatic Tuning

-			
h3-Open-BDEC			
New Principle for Computations Numerical Alg./Library	Simulation + Data + Learning App. Dev. Framework	Integration + Communications+ Utilities Control & Utility	
h3-Open-MATH Algorithms with High- Performance, High Reliability & Mixed/Adaptive Precision	h3-Open-APP: Simulation Application Development	h3-Open-SYS Control & Integration	
h3-Open-VER Verification of Accuracy	h3-Open-DATA: Data Data Science	h3-Open-UTIL Utilities for Large-Scale Computing	
h3-Open-AT Automatic Tuning	h3-Open-DDA: Learning Data Driven Approach	Hierarchical, Hybrid, Hoterogeneeus h3-Open-BDEC Big Data & Extreme Computing	
	New Principle for Computations Numerical Alg./Library h3-Open-MATH Algorithms with High- Performance, High Reliability & Mixed/Adaptive Precision h3-Open-VER Verification of Accuracy h3-Open-AT Automatic Tuning	h3-Open-BDECNew Principle for Computations Numerical Alg./LibrarySimulation + Data + Learning App. Dev. Frameworkh3-Open-MATH Algorithms with High- Performance, High Reliability & Mixed/Adaptive PrecisionSimulation Application Developmenth3-Open-VER Verification of Accuracyh3-Open-DATA: Data Data Scienceh3-Open-AT Rutomatic Tuningh3-Open-DDAT Learning Data Driven Approach	

23

Approximate Computing with Low/Adaptive/Trans Precision

- Mostly, scientific computing has been conducted using FP64 (double precision, DP)
 - Sometimes, problems can be solved by FP32 (single precision, SP) or lower precision
- Lower precision may save time, energy and memory
- Approximate Computing
 - Originally for image recognition etc. where accuracy is not necessarily required
 - Also applied to numerical computations
- Computations by lower precision and by mixed precision may provide results with less accuracy

<u>P3D</u>: Steady State 3D Heat Conduction by FVM (1/2) $\nabla \cdot (\lambda \nabla \phi) + f = 0$

- 7-point Stencil
- Heterogenous Material Property
 - λ_1/λ_2 is proportional to the condition number of coefficient matrices
- Coefficient Matrix
 - Sparse, SPD
- ICCG Solver
- Fortran 90 + OpenMP
- CM-RCM Reordering

P3D: Steady State 3D Heat Conduction by FVM (2/2)

- Various Configurations
 - FP64 (Double), FP32 (Single), FP16 (Half) (just for preconditioning)
 - Matrix Storage Format (CRS, ELL, SELL-C-σ etc.)

			26
System	Oakforet- PACS	Oakbridge- CX	Oakleaf-7 (FX700)
Abbreviation	OFP	OBCX	OL7
Architecture of CPU	Intel Xeon Phi 7250 (Knights Landing, KNL)	Intel Xeon Platinum 8280 (Cascade Lake, CLX)	Fujitsu A64FX(1.8GHz)
Core#/Socket	68	28	48
Socket#/Node	1	2	1
Peak Performance (DP) (GFLOPS)/Node	3,046	4,838	2,765
Memory Capacity (GB)/Node	MCDRAM: 16 DDR4: 96	192	32
Memory Bandwidth (GB/sec), Stream Triad	MCDRAM: 490 DDR4: 84.5	202	809
Compiler	Intel Parallel Studio 2019		Fujitsu FCC 4.0.0

Ratio of Performance Elapsed Computation Time for ICCG (DP), Normalized by OFP with CRS, $\lambda_1 / \lambda_2 = 1$ [KN et al. SWoPP 2020] FIL Sliced ELL CRS **Medium**: 128³ Large: 256³ 5.00 5.00 4.00 4.00 Performance Large is Good Large is Good Perfo Relative 2.00 Relative I 2.00 1.00 1.00 0.00 0.00 CRS ELL Opt.ELL CRS Opt.EL ELL Mat rmat

Mixed Precision Computing of ICCG Solver for P3D on FX700

	SpMV, DAXPY, Dot Products	Preconditioning	Vectors for Preconditioning
D-D	FP64	FP64	FP64
D-S	FP64	FP32	FP32
D-H	FP64	FP16	FP32
S-S	FP32	FP32	FP32
S-H	FP32	FP16	FP32

Mixed Precision Computing for P3D on FX700 Implementation of Forward Substitution (CRS) in ICCG

[KN et al. SWoPP 2020]

FP64 FP32 FP16

```
!$omp parallel do private(ip, i)
      do ip= 1. PEsmpTOT
     do i = SMPindex((ip-1)*NCOLORtot)+1, SMPindex(ip*NCOLORtot)
       Ws(I,Z) = W(I,R)
      enddo
      enddo
                                                    D-S
!$omp parallel private(ic, ip, ip1, I, WVALs, k)
      do ic= 1, NCOLORtot
[$omp do
        do ip= 1. PEsmpTOT
          ip1= (ip-1)*NCOLORtot + ic
       do i= SMPindex(ip1-1)+1, SMPindex(ip1)
          WVALs= Ws(i,Z)
         do k= indexL(i-1)+1, indexL(i)
            WVALs= WVALs - ALs(k) * Ws(itemL(k), Z)
          enddo
          Ws(i,Z) = WVALs * Ws(i.DD)
        enddo
        enddo
     enddo
!$omp end parallel
(Backward Substitution)
!$omp parallel do private(ip, i)
      do ip= 1. PEsmpTOT
     do i= SMPindex((ip-1)*NCOLORtot)+1. SMPindex(ip*NCOLORtot)
       W(I, Z) = Ws(I, Z)
      enddo
      enddo
```


Mixed Precision Computation D-H/S-H do not converge at $\lambda_1/\lambda_2 = 10^6$

Number of Iterations (Normalized by that of D-D) $\bigcirc \sim \bigcirc \sim \bigcirc -D$, \blacktriangle $\sim \bigtriangleup$

Results of (D-S,D-H) agree withthose of D-D (if $\lambda_1 / \lambda_2 \leq 10^5$)

[KN et al. SWoPP 2020]

h3-Open-BDEC: Two Significant Innovations

- Methods for Numerical Analysis with High-Performance/High-Reliability/Power-Saving based on the New Principle of Computing by
 - ✓ Adaptive Precision
 - ✓ Accuracy Verification
 - ✓ Automatic Tuning

② Hierarchical Data Driven Approach (*h*DDA) based on machine learning

✓ Integration of (S+D+L)
 <u>AI for HPC</u>

Real-World Scientific Simulations

- Non-Linear: Huge Number of Parameter Studies needed
 - ✓ Reduction of cases is very crucial
- Data Assimilation
 - Mid-Range Weather Prediction: 50-100 Ensemble Cases, 1,000 needed for accurate solution.
 - ✓ 50-100 (or fewer) may be enough for accurate solution, if opt. parameters are selected (e.g. by ML),

[Miyoshi et al. 2014]

Hierarchical Data Driven Approach: hDDA

- Data Driven Approach (DDA)
 - Technique of AI/ML is introduced for predicting the results of simulations with different parameters.
 - DDA generally requires O(10³-10⁴) runs for generation of training data.

<u>hDDA (Hierarchical DDA)</u>

- Simplified models with coarser meshes (but preserving original features of physics) for efficient training are constructed automatically by Machine Learning using:
 - Feature Detection, AMR
 - MOR (Model Order Reduction)
 - UQ (Uncertainty Quantification)
 - Sparse Modeling

Results

Results

Information

Acceleration of Transient CFD Simulations using ML/CNN Integration of (S+D+L), AI for HPC

[c/o Takashi Shimokawabe (ITC/U.Tokyo)]

Possible Applications (S+D+L) on Wisteria/BDEC-01 with h3-Open-BDEC

Hierarchical, Hybrid, Heterogeneeus h3-Open-BDEC Big Data & Extreme Computing

- Simulations with Data Assimilation

 Very Typical Example of (S+D+L)
- Atmosphere-Ocean Coupling for Weather and Climate Simulations

 AORI/U.Tokyo, RIKEN R-CCS, NIES
- Earthquake Simulations with Real-Time Data Assimilation
 - ERI/U. Tokyo
- Real-Time Disaster Simulations

 Flood, Tsunami
- (S+D+L) for Existing Simulation Codes (Open Source Software) – OpenFOAM

Real-Time Sharing of Seismic Observation is possible in Japan by JDXnet with SINET

- Seismic Observation Data (100Hz/3-dir's/O(10³) observation points) by JDXnet is available through SINET in Real Time
 - O(10²) GB/day
 - O(10⁵) pts in future including stations operated by industry

3D Earthquake Simulation with Real-Time Data Observation/Assimilation

Real-Time Data/Simulation Assimilation Real-Time Update of Underground Model

> [c/o Prof. T.Furumura (ERI/U.Tokyo)]

Example of Real-Time Assimilation of (Obs.+Comp.):

Long Wave Propagation in Tokyo

Response Spectrum

3D Earthquake Simulation with Real-Time Data Observation/Assimilation

- Accurate Prediction of Seismic Wave Propagation with Real-Time Data Observation/Assimilation
 - Emergency Info. for Safer Evacuation
- 3D Underground Model
 - Heterogeneous, Observation is difficult
 - Inversion analyses of seismic waves are important for prediction of structure of underground model
 - ML may be utilized for acceleration of this prediction based on analyses of small earthquakes in normal time

Preliminary Works on Oakbridge-CX (OBCX)

- Intel Xeon Platinum 8280 (Cascade Lake, CLX), Fujitsu
 - 1,368 nodes, 6.61 PF peak,
 385.1 TB/sec, 4.2+ PF for HPL
 <u>#69 in 56th Top500 (Nov.2020)</u>
 - Fast Cache: SSD's for 128 nodes: Intel SSD, BeeGFS: 200+TB Fast FS
 - 1.6 TB/node, 3.20/1.32 GB/s/node for R/W
 - 16 of these nodes can directly access external resources (server, storage, sensor network etc.) through SINET
- Switching to Wisteria/BDEC-01 after May 2021

Computing on Wisteria/BDEC-01

- Wisteria/BDEC-01
 - Aquarius (GPU: NVIDIA A100)
 - Filtering, ML, Visualization
 - Odyssey (CPU: A64FX)
 - Data Assimilation, Simulation
- Combining Odyssey-Aquarius (O-A)
 - Single MPI Job over O-A is impossible
 - Actually, O-A are connected through IB-EDR with 2TB/sec.

JDXnet

SNET

- h3-Open-SYS/WaitIO
 - Library for Inter-Process Communication via Files through IB-EDR with MPI-like interface
- h3-Open-UTIL/MP
 - Multiphysics Coupler

h3-Open-UTIL/MP

Multilevel Coupler/Data Assimilation

- Current Coupler: ppOpen-MATH/MP
 - Weak-Coupling of Multiple (usually two) Applications
 - Each application does a single computation
- h3-Open-UTIL/MP
 - Data Assimilation (Multiple Computations: Ensemble)
 - Assimilation of Computations with Different Resolutions
 - h3-Open-DATA, h3-Open-APP
 - Data Assimilation by Coupled Codes
 - e.g. Atmosphere-Ocean
- Data Assimilation: h3-Open-DATA
 - Karman Filter, Particle Karman Filter
 LETKF
 - Adjoint Method
- Generation of Simplified Models in hDDA

h3-Open-UTIL/MP (h3o-U/MP) (HPC+AI) Coupling [Dr. H. Yashiro, NIES]

- Providing on-the-fly input/output/training data to the Analysis/ML tools
 - Easy to apply to existing HPC applications
 - Easy access to existing Python-based tools for AI/ML

3-Onen-

h3-Open-UTIL/MP (h3o-U/MP) + h3-Open-SYS/WaitIO

h3-Open-UTIL/MP + h3-Open-SYS/WaitIO

- Current Statue: Single MPI Job
- Direct Communication between Odyssey-Aquarius through IB-EDR by h3-Open-SYS/WaitIO, which provides MPI-like Interface

Schedule for Public Use

Collaborations are Welcome !!

- h3-Open-SYS/WaitIO
 - October 2021, O-A Direct Communication by MPI-like Interface
- h3-Open-UTIL/MP(HPC+Python)
 - October 2021 on Odyssey only (Single MPI)
- h3-Open-UTIL/MP+h3-Open-SYS/WaitIO via IB-EDR
 - January-April 2022

h3-Open-BDEC: Summary

http://nkl.cc.u-tokyo.ac.jp/h3-Open-BDEC/

- By Integration of (S+D+L) using <u>h3-Open-BDEC (Adaptive</u> <u>Precision + hDDA</u>, total energy consumption (=total computation time) for simulations will be <u>10%</u> of that by the conventional methods for simulations with parameter studies
- h3-Open-BDEC is the 1st innovative software platform for integration of (S+D+L) on Exascale systems, where computational scientists can achieve such integration without supports by other experts in data analytics and AI/ML.
- Source codes and documents (in English) are open to public for various kinds of computational environments.