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BEM-BB:	Parallel	Framework	for	Boundary	Element	
Method	Analyses

• BEM-BB (http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/downloads/)

• Fortran90 based framework
• Provides parallel generation of coefficient matrix and parallel linear solvers
• Parallelized with MPI + OpenMP 
• Supports dense matrices and hierarchical matrices (ℋ-matrices) 
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framework supports model data input, assembly of the coefficient matrix, and
solution of linear systems, steps that are generally required in BEM analysis.
When employing this framework, users are required to generate user-defined
functions that calculate each element of the coefficient matrix. In other
words, users are required to implement a program to calculate the integrals
of boundary elements, which depend on the governing target of BEM analy-
sis. The target integral equation of the BEM-BB framework is described as
follows. For f ∈ H ′, u ∈ H and a kernel function of a convolution operator
g : Rd × Ω → R,

∫

Ω

g(x, y)u(y)dy = f (6.1)

where Ω ⊂ Rd denotes a (d− 1)-dimensional domain, H the Hilbert space of
functions on a Ω, and H ′ dual space of H. To numerically calculate Eq.(6.1),
we divide the domain, Ω, into the elements Ωh = {ωj : j ∈ J}, where J
is an index set. In weighted residual methods, such as the Ritz-Galerkin
method and the collocation method, the function u is approximated from a
n-dimensional subspace Hh ⊂ H. Given a basis (ϕi)i∈! of Hh for an index
set ! := {1, . . . , N}, the approximant uh ∈ Hh-u can be expressed using a
coefficient vector φ = (φi)i∈! that satisfies uh =

∑
i∈! φiϕi. Note that the

supports of the basis Ωh
ϕi

:= supp ϕ are assembled from the sets ωj. Equation
(6.1) is then reduced to the following system of linear equations.

Aφ = b (6.2)

Aij =

∫

Ω

ϕi(x)

∫

Ω

g(x, y)ϕ(y)dydx (6.3)

bi =

∫

Ω

ϕi(x)fdx (6.4)

Here, i, j ∈ !. The user-defined function required to calculate the elements
of the i-th row and the j-th column of the coefficient matrix is expressed as
Eq.(6.3).

There are two versions of the implementation: one based on dense ma-
trix computations and the other based on H-matrix computations. Although
the H-matrix version depends on the distributed parallel H-matrix library
HACApK [13], the problems of vectorization are similar. As shown in
Fig. 6.1, the proposed framework consists of three components: model data
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Basic	Idea	for	Vectorization	

!$omp parallel do 
do j = 1, N
!$omp simd
do i = 1, N
a(i,j) = user_func(i,j,st_bemv)

end do 
end do 

!$omp end do 

Coefficient matrix generation 
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Basic	Idea	for	Vectorization	

!$omp parallel do 
do j = 1, N
!$omp simd
do i = 1, N
a(i,j) = user_func(i,j,st_bemv)

end do 
end do 

!$omp end do 

Coefficient matrix generation 

This SIMD directive 
does not work!

st_bemv is a structure 
including input model 
data 

real(8),dimension(SIMDLENGTH) :: ans
real(8),dimension(SIMDLENGTH) :: arg1,arg2,... 

!$omp parallel do 
do j = 1, N

do i = 1, N, SIMDLENGTH
ii = 1
do jj = i, min(i+SIMDLENGTH-1, N)

call set_args(i,j,st_bemv,arg1(ii),arg2(ii),…)
ii = ii+1

end do 
!$omp simd
do ii = 1, SIMDLENGTH

ans(ii) = vectorize_func(arg1(ii),arg2(ii),…)
end do 
ii = 1
do jj=i,min(i+SIMDLENGTH-1, N) 

a(i,j) = ans(ii)
ii = ii+1 

end do 
end do 

end do 
!$omp end parallel 

This loop is 
sequentially 
executed 

This loop is 
obviously 
vectorizable
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User function

real(8) function user_func(i,j,st_bemv)
integer :: i,j
type(BemInput) :: st_bemv
real(8) :: a1, a2, …

a1 = st_bemv%a1(i,j) 
a2 = st_bemv%a2(i,j)
…
! calculate i,j value of coefficient 

end function user_func

subroutine set_args(i,j,st_bemv, a1, a2, …)
integer :: i,j
type(hacapkInput) :: st_bemv
real(8) :: a1, a2, …
a1 = st_bemv%a1(i,j) 
a2 = st_bemv%a2(i,j)
…

end subroutine set_args

Original

real(8) function vectorize_func(a1, a2, …)
!$omp declare simd(vectorize_func)         &
!$omp simdlen(SIMDLENGTH)                   &
!$omp linear(ref(a1, a2, …))      
real(8) :: a1, a2, …
! calculate i,j value of coefficient 
end function vectorize_func

Data access

Computation

User implementation

Structure 
including input 
model data 

Basic	Idea	for	Vectorization	
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Fill-in-the-blank puzzle-like user interface

1. Implement include files
2. Implement  “set_args” and “vectorize_func” in “user func.f90”.
3. Correctly implement the dummy without modifying the dummy function itself
4. Provide SIMDLENGTH of the target processor by using the -D compiler flag

real(8) function user_func_dummy(i,j,st_bemv) 
implicit none
integer ,intent(in) :: i,j
type(BemInput) :: st_bemv
integer :: ii,jj,j_st,j_en,lhp,ltp
real (8) :: ans

#include "declaration.inc" 
#include "call_set_args_i.inc" 
#include "call_set_args_j.inc" 
#include "call_set_args.inc" 
#include "vectorize_func.inc" 

user_func_dummy = ans
end function user_func_dummy
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Numerical Evaluations

１V 0.25m

Ground

𝑃[𝑢](𝑥) ∶= ∫ ,
-. /01
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D[𝑢](𝑥) ∶= ∫ /01,7(1)
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■ Test model of electrostatic field analysis 
►Perfect conducting sphere 
►Dielectric sphere 

User-defined functions depend on 
these integral equations
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Coefficient H-matrix generation 
on BDW and KNL

Original SIMD design 
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■ Evaluation Environments 

• including branch divergence  

►BDW : Intel Xeon E5-2695 v4, 18 core 
►KNL : Intel Xeon Phi 7250, 68 core 
►Compiler : Intel compiler 18.0.1 

• -qopenmp -O3 -ipo -align array64byte
-xAVX2 (BDW) –xMIC-AVX512 (KNL)    

■ Performance comparison 
►BDW : approximately 2x speedup 
►KNL : over 4x speedup 

• In the case of dense matrix generation, 
new design achieved at most 6.6x speedup   

T. Hoshino et al. “Design of Parallel BEM Analyses 
Framework for SIMD Processors” (ICCS 2018)
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Thank you for watching

Conclusion

• We propose new framework design of BEM-BB for SIMD processors
• The SIMD vectorization strategy can be used in other compute bounded 

applications
• We evaluate the proposed framework on BDW and KNL with 

electrostatic field analysis
• BDW: 2.22x and 2.44x speedup for H-matrix and Dense-matrix construction, 

respectively
• KNL: 4.34x and 6.62x speedup for H-matrix and Dense-matrix construction, 

respectively
• For more details…

• T. Hoshino et al. “Design of Parallel BEM Analyses Framework for SIMD 
Processors” (ICCS 2018)


