
Design	of	Parallel	BEM	Analysis	
Framework	for	SIMD	Processors	

Tetsuya Hoshino
(ITC/JCAHPC, The University of Tokyo)

©ondoku3.com

BEM-BB:	Parallel	Framework	for	Boundary	Element	
Method	Analyses

• BEM-BB (http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/downloads/)

• Fortran90 based framework
• Provides parallel generation of coefficient matrix and parallel linear solvers
• Parallelized with MPI + OpenMP
• Supports dense matrices and hierarchical matrices (ℋ-matrices)

©ondoku3.com

Dense matrix ℋ-matrix

O(N2) O(NlogN)

framework supports model data input, assembly of the coefficient matrix, and
solution of linear systems, steps that are generally required in BEM analysis.
When employing this framework, users are required to generate user-defined
functions that calculate each element of the coefficient matrix. In other
words, users are required to implement a program to calculate the integrals
of boundary elements, which depend on the governing target of BEM analy-
sis. The target integral equation of the BEM-BB framework is described as
follows. For f ∈ H ′, u ∈ H and a kernel function of a convolution operator
g : Rd × Ω → R,

∫

Ω

g(x, y)u(y)dy = f (6.1)

where Ω ⊂ Rd denotes a (d− 1)-dimensional domain, H the Hilbert space of
functions on a Ω, and H ′ dual space of H. To numerically calculate Eq.(6.1),
we divide the domain, Ω, into the elements Ωh = {ωj : j ∈ J}, where J
is an index set. In weighted residual methods, such as the Ritz-Galerkin
method and the collocation method, the function u is approximated from a
n-dimensional subspace Hh ⊂ H. Given a basis (ϕi)i∈! of Hh for an index
set ! := {1, . . . , N}, the approximant uh ∈ Hh-u can be expressed using a
coefficient vector φ = (φi)i∈! that satisfies uh =

∑
i∈! φiϕi. Note that the

supports of the basis Ωh
ϕi

:= supp ϕ are assembled from the sets ωj. Equation
(6.1) is then reduced to the following system of linear equations.

Aφ = b (6.2)

Aij =

∫

Ω

ϕi(x)

∫

Ω

g(x, y)ϕ(y)dydx (6.3)

bi =

∫

Ω

ϕi(x)fdx (6.4)

Here, i, j ∈ !. The user-defined function required to calculate the elements
of the i-th row and the j-th column of the coefficient matrix is expressed as
Eq.(6.3).

There are two versions of the implementation: one based on dense ma-
trix computations and the other based on H-matrix computations. Although
the H-matrix version depends on the distributed parallel H-matrix library
HACApK [13], the problems of vectorization are similar. As shown in
Fig. 6.1, the proposed framework consists of three components: model data

86

Target equation of BEM analysis:

Framework	Design	of	BEM-BB	

Model data input

Parallel
generation of

coefficient matrix

Parallel linear
solver

(BiCGSTAB etc.)

User-defined
function

BEM BB framework

Input data

Return a value
of i,j-element

©ondoku3.com

framework supports model data input, assembly of the coefficient matrix, and
solution of linear systems, steps that are generally required in BEM analysis.
When employing this framework, users are required to generate user-defined
functions that calculate each element of the coefficient matrix. In other
words, users are required to implement a program to calculate the integrals
of boundary elements, which depend on the governing target of BEM analy-
sis. The target integral equation of the BEM-BB framework is described as
follows. For f ∈ H ′, u ∈ H and a kernel function of a convolution operator
g : Rd × Ω → R,

∫

Ω

g(x, y)u(y)dy = f (6.1)

where Ω ⊂ Rd denotes a (d− 1)-dimensional domain, H the Hilbert space of
functions on a Ω, and H ′ dual space of H. To numerically calculate Eq.(6.1),
we divide the domain, Ω, into the elements Ωh = {ωj : j ∈ J}, where J
is an index set. In weighted residual methods, such as the Ritz-Galerkin
method and the collocation method, the function u is approximated from a
n-dimensional subspace Hh ⊂ H. Given a basis (ϕi)i∈! of Hh for an index
set ! := {1, . . . , N}, the approximant uh ∈ Hh-u can be expressed using a
coefficient vector φ = (φi)i∈! that satisfies uh =

∑
i∈! φiϕi. Note that the

supports of the basis Ωh
ϕi

:= supp ϕ are assembled from the sets ωj. Equation
(6.1) is then reduced to the following system of linear equations.

Aφ = b (6.2)

Aij =

∫

Ω

ϕi(x)

∫

Ω

g(x, y)ϕ(y)dydx (6.3)

bi =

∫

Ω

ϕi(x)fdx (6.4)

Here, i, j ∈ !. The user-defined function required to calculate the elements
of the i-th row and the j-th column of the coefficient matrix is expressed as
Eq.(6.3).

There are two versions of the implementation: one based on dense ma-
trix computations and the other based on H-matrix computations. Although
the H-matrix version depends on the distributed parallel H-matrix library
HACApK [13], the problems of vectorization are similar. As shown in
Fig. 6.1, the proposed framework consists of three components: model data

86

framework supports model data input, assembly of the coefficient matrix, and
solution of linear systems, steps that are generally required in BEM analysis.
When employing this framework, users are required to generate user-defined
functions that calculate each element of the coefficient matrix. In other
words, users are required to implement a program to calculate the integrals
of boundary elements, which depend on the governing target of BEM analy-
sis. The target integral equation of the BEM-BB framework is described as
follows. For f ∈ H ′, u ∈ H and a kernel function of a convolution operator
g : Rd × Ω → R,

∫

Ω

g(x, y)u(y)dy = f (6.1)

where Ω ⊂ Rd denotes a (d− 1)-dimensional domain, H the Hilbert space of
functions on a Ω, and H ′ dual space of H. To numerically calculate Eq.(6.1),
we divide the domain, Ω, into the elements Ωh = {ωj : j ∈ J}, where J
is an index set. In weighted residual methods, such as the Ritz-Galerkin
method and the collocation method, the function u is approximated from a
n-dimensional subspace Hh ⊂ H. Given a basis (ϕi)i∈! of Hh for an index
set ! := {1, . . . , N}, the approximant uh ∈ Hh-u can be expressed using a
coefficient vector φ = (φi)i∈! that satisfies uh =

∑
i∈! φiϕi. Note that the

supports of the basis Ωh
ϕi

:= supp ϕ are assembled from the sets ωj. Equation
(6.1) is then reduced to the following system of linear equations.

Aφ = b (6.2)

Aij =

∫

Ω

ϕi(x)

∫

Ω

g(x, y)ϕ(y)dydx (6.3)

bi =

∫

Ω

ϕi(x)fdx (6.4)

Here, i, j ∈ !. The user-defined function required to calculate the elements
of the i-th row and the j-th column of the coefficient matrix is expressed as
Eq.(6.3).

There are two versions of the implementation: one based on dense ma-
trix computations and the other based on H-matrix computations. Although
the H-matrix version depends on the distributed parallel H-matrix library
HACApK [13], the problems of vectorization are similar. As shown in
Fig. 6.1, the proposed framework consists of three components: model data

86

Target equation of BEM analysis:

discretization

Framework	Design	of	BEM-BB	

Model data input

Parallel
generation of

coefficient matrix

Parallel linear
solver

(BiCGSTAB etc.)

User-defined
function

BEM BB framework

Input data

Return a value
of i,j-element

©ondoku3.com

i

j

calculate i,j element
of coefficient matrix

framework supports model data input, assembly of the coefficient matrix, and
solution of linear systems, steps that are generally required in BEM analysis.
When employing this framework, users are required to generate user-defined
functions that calculate each element of the coefficient matrix. In other
words, users are required to implement a program to calculate the integrals
of boundary elements, which depend on the governing target of BEM analy-
sis. The target integral equation of the BEM-BB framework is described as
follows. For f ∈ H ′, u ∈ H and a kernel function of a convolution operator
g : Rd × Ω → R,

∫

Ω

g(x, y)u(y)dy = f (6.1)

where Ω ⊂ Rd denotes a (d− 1)-dimensional domain, H the Hilbert space of
functions on a Ω, and H ′ dual space of H. To numerically calculate Eq.(6.1),
we divide the domain, Ω, into the elements Ωh = {ωj : j ∈ J}, where J
is an index set. In weighted residual methods, such as the Ritz-Galerkin
method and the collocation method, the function u is approximated from a
n-dimensional subspace Hh ⊂ H. Given a basis (ϕi)i∈! of Hh for an index
set ! := {1, . . . , N}, the approximant uh ∈ Hh-u can be expressed using a
coefficient vector φ = (φi)i∈! that satisfies uh =

∑
i∈! φiϕi. Note that the

supports of the basis Ωh
ϕi

:= supp ϕ are assembled from the sets ωj. Equation
(6.1) is then reduced to the following system of linear equations.

Aφ = b (6.2)

Aij =

∫

Ω

ϕi(x)

∫

Ω

g(x, y)ϕ(y)dydx (6.3)

bi =

∫

Ω

ϕi(x)fdx (6.4)

Here, i, j ∈ !. The user-defined function required to calculate the elements
of the i-th row and the j-th column of the coefficient matrix is expressed as
Eq.(6.3).

There are two versions of the implementation: one based on dense ma-
trix computations and the other based on H-matrix computations. Although
the H-matrix version depends on the distributed parallel H-matrix library
HACApK [13], the problems of vectorization are similar. As shown in
Fig. 6.1, the proposed framework consists of three components: model data

86

framework supports model data input, assembly of the coefficient matrix, and
solution of linear systems, steps that are generally required in BEM analysis.
When employing this framework, users are required to generate user-defined
functions that calculate each element of the coefficient matrix. In other
words, users are required to implement a program to calculate the integrals
of boundary elements, which depend on the governing target of BEM analy-
sis. The target integral equation of the BEM-BB framework is described as
follows. For f ∈ H ′, u ∈ H and a kernel function of a convolution operator
g : Rd × Ω → R,

∫

Ω

g(x, y)u(y)dy = f (6.1)

where Ω ⊂ Rd denotes a (d− 1)-dimensional domain, H the Hilbert space of
functions on a Ω, and H ′ dual space of H. To numerically calculate Eq.(6.1),
we divide the domain, Ω, into the elements Ωh = {ωj : j ∈ J}, where J
is an index set. In weighted residual methods, such as the Ritz-Galerkin
method and the collocation method, the function u is approximated from a
n-dimensional subspace Hh ⊂ H. Given a basis (ϕi)i∈! of Hh for an index
set ! := {1, . . . , N}, the approximant uh ∈ Hh-u can be expressed using a
coefficient vector φ = (φi)i∈! that satisfies uh =

∑
i∈! φiϕi. Note that the

supports of the basis Ωh
ϕi

:= supp ϕ are assembled from the sets ωj. Equation
(6.1) is then reduced to the following system of linear equations.

Aφ = b (6.2)

Aij =

∫

Ω

ϕi(x)

∫

Ω

g(x, y)ϕ(y)dydx (6.3)

bi =

∫

Ω

ϕi(x)fdx (6.4)

Here, i, j ∈ !. The user-defined function required to calculate the elements
of the i-th row and the j-th column of the coefficient matrix is expressed as
Eq.(6.3).

There are two versions of the implementation: one based on dense ma-
trix computations and the other based on H-matrix computations. Although
the H-matrix version depends on the distributed parallel H-matrix library
HACApK [13], the problems of vectorization are similar. As shown in
Fig. 6.1, the proposed framework consists of three components: model data

86

Target equation of BEM analysis:

discretization

A

Framework	Design	of	BEM-BB	

implementation
Model data input

Parallel
generation of

coefficient matrix

Parallel linear
solver

(BiCGSTAB etc.)

User-defined
function

BEM BB framework

Input data

Return a value
of i,j-element

©ondoku3.com

Basic	Idea	for	Vectorization	

!$omp parallel do
do j = 1, N
!$omp simd
do i = 1, N
a(i,j) = user_func(i,j,st_bemv)

end do
end do

!$omp end do

Coefficient matrix generation

©ondoku3.com

st_bemv is a structure
including input model
data

Basic	Idea	for	Vectorization	

!$omp parallel do
do j = 1, N
!$omp simd
do i = 1, N
a(i,j) = user_func(i,j,st_bemv)

end do
end do

!$omp end do

Coefficient matrix generation

This SIMD directive
does not work!

st_bemv is a structure
including input model
data

©ondoku3.com

Basic	Idea	for	Vectorization	

!$omp parallel do
do j = 1, N
!$omp simd
do i = 1, N
a(i,j) = user_func(i,j,st_bemv)

end do
end do

!$omp end do

Coefficient matrix generation

This SIMD directive
does not work!

st_bemv is a structure
including input model
data

real(8),dimension(SIMDLENGTH) :: ans
real(8),dimension(SIMDLENGTH) :: arg1,arg2,...

!$omp parallel do
do j = 1, N

do i = 1, N, SIMDLENGTH
ii = 1
do jj = i, min(i+SIMDLENGTH-1, N)

call set_args(i,j,st_bemv,arg1(ii),arg2(ii),…)
ii = ii+1

end do
!$omp simd
do ii = 1, SIMDLENGTH

ans(ii) = vectorize_func(arg1(ii),arg2(ii),…)
end do
ii = 1
do jj=i,min(i+SIMDLENGTH-1, N)

a(i,j) = ans(ii)
ii = ii+1

end do
end do

end do
!$omp end parallel

This loop is
sequentially
executed

This loop is
obviously
vectorizable

©ondoku3.com

User function

real(8) function user_func(i,j,st_bemv)
integer :: i,j
type(BemInput) :: st_bemv
real(8) :: a1, a2, …

a1 = st_bemv%a1(i,j)
a2 = st_bemv%a2(i,j)
…
! calculate i,j value of coefficient

end function user_func

subroutine set_args(i,j,st_bemv, a1, a2, …)
integer :: i,j
type(hacapkInput) :: st_bemv
real(8) :: a1, a2, …
a1 = st_bemv%a1(i,j)
a2 = st_bemv%a2(i,j)
…

end subroutine set_args

Original

real(8) function vectorize_func(a1, a2, …)
!$omp declare simd(vectorize_func) &
!$omp simdlen(SIMDLENGTH) &
!$omp linear(ref(a1, a2, …))
real(8) :: a1, a2, …
! calculate i,j value of coefficient
end function vectorize_func

Data access

Computation

User implementation

Structure
including input
model data

Basic	Idea	for	Vectorization	

©ondoku3.com

Fill-in-the-blank puzzle-like user interface

1. Implement include files
2. Implement “set_args” and “vectorize_func” in “user func.f90”.
3. Correctly implement the dummy without modifying the dummy function itself
4. Provide SIMDLENGTH of the target processor by using the -D compiler flag

real(8) function user_func_dummy(i,j,st_bemv)
implicit none
integer ,intent(in) :: i,j
type(BemInput) :: st_bemv
integer :: ii,jj,j_st,j_en,lhp,ltp
real (8) :: ans

#include "declaration.inc"
#include "call_set_args_i.inc"
#include "call_set_args_j.inc"
#include "call_set_args.inc"
#include "vectorize_func.inc"

user_func_dummy = ans
end function user_func_dummy

©ondoku3.com

Numerical Evaluations

１V 0.25m

Ground

𝑃[𝑢](𝑥) ∶= ∫ ,
-. /01

𝑢 𝑦 d𝑦, 𝑥 ∈ ΩΩ

D[𝑢](𝑥) ∶= ∫ /01,7(1)
-. /01 8 𝑢 𝑦 d𝑦, 𝑥 ∈ ΩΩ

■ Test model of electrostatic field analysis
►Perfect conducting sphere
►Dielectric sphere

User-defined functions depend on
these integral equations

0

2

4

6

8

10

12

14

16

Perfect
BDW

Dierectric
BDW

Perfect
KNL

Dierectric
KNL

El
ap

se
d

tim
e

[s
ec

]

Coefficient H-matrix generation
on BDW and KNL

Original SIMD design

2.2x

1.9x

4.3x

4.1x

■ Evaluation Environments

• including branch divergence

►BDW : Intel Xeon E5-2695 v4, 18 core
►KNL : Intel Xeon Phi 7250, 68 core
►Compiler : Intel compiler 18.0.1

• -qopenmp -O3 -ipo -align array64byte
-xAVX2 (BDW) –xMIC-AVX512 (KNL)

■ Performance comparison
►BDW : approximately 2x speedup
►KNL : over 4x speedup

• In the case of dense matrix generation,
new design achieved at most 6.6x speedup

T. Hoshino et al. “Design of Parallel BEM Analyses
Framework for SIMD Processors” (ICCS 2018)

©ondoku3.com

Thank you for watching

Conclusion

• We propose new framework design of BEM-BB for SIMD processors
• The SIMD vectorization strategy can be used in other compute bounded

applications
• We evaluate the proposed framework on BDW and KNL with

electrostatic field analysis
• BDW: 2.22x and 2.44x speedup for H-matrix and Dense-matrix construction,

respectively
• KNL: 4.34x and 6.62x speedup for H-matrix and Dense-matrix construction,

respectively
• For more details…

• T. Hoshino et al. “Design of Parallel BEM Analyses Framework for SIMD
Processors” (ICCS 2018)

