

Low Precision Computing in Sparse Linear Solvers

Kengo Nakajima Information Technology Center The University of Tokyo

h3-Open-BDEC: Innovative Software Platform for Integration of (Simulation+Data+Learning) (S+D+L) on the BDEC System

 5-year project supported by Japanese Government through JSPS Grant-in-Aid for Scientific Research (S) since 2019

- 科研費基盤S

- Leading-PI: Kengo Nakajima (The University of Tokyo)
- Total Budget: 152.7M JPY= 1.41M USD

h3-Open-BDEC

Innovative Software Platform for Integration of (S+D+L) on BDEC

h3-Open-BDEC				
New Principle for Computations	Simulation + Data + Learning	Integration + Communications+ Utilities		
h3-Open-MATH Algorithms with High- Performance, Reliability, Efficiency	h3-Open-APP: Simulation Application Development	h3-Open-SYS Control & Integration		
h3-Open-VER Verification of Accuracy	h3-Open-DATA: Data Data Science	h3-Open-UTIL Utilities for Large-Scale Computing		
h3-Open-AT Automatic Tuning	h3-Open-DDA: Learning Data Driven Approach			

h3-Open-BDEC: Two Significant Innovations

- Methods for Numerical Analysis with High-Performance/High-Reliability/Power-Saving based on the New Principle of Computing by
 - ✓ Adaptive Precision
 - ✓ Accuracy Verification
 - ✓ Automatic Tuning

h3-Open-BDEC			
Numerical Alg./Library New Principle for Computations	App. Dev. Framework Simulation + Data + Learning	Control & Utility Integration + Communications+ Utilities	
h3-Open-MATH Algorithms with High- Performance, Reliability, Efficiency	h3-Open-APP: Simulation Application Development	h3-Open-SYS Control & Integration	
h3-Open-VER Verification of Accuracy	h3-Open-DATA: Data Data Science	h3-Open-UTIL Utilities for Large-Scale Computing	
h3-Open-AT Automatic Tuning	h3-Open-DDA: Learning Data Driven Approach		

4

h3-Open-BDEC: Two Significant Innovations

- Methods for Numerical Analysis with High-Performance/High-Reliability/Power-Saving based on the New Principle of Computing by
 - ✓ Adaptive Precision
 - ✓ Accuracy Verification
 - ✓ Automatic Tuning
- Diversional Data
 Driven Approach
 (*h*DDA) based on
 machine learning
 - ✓ Integration of (S+D+L) <u>AI for HPC</u>

h3-Open-BDEC			
Numerical Alg./Library New Principle for Computations	App. Dev. Framework Simulation + Data + Learning	Control & Utility Integration + Communications+ Utilities	
h3-Open-MATH Algorithms with High- Performance, Reliability, Efficiency	h3-Open-APP: Simulation Application Development	h3-Open-SYS Control & Integration	
h3-Open-VER Verification of Accuracy	h3-Open-DATA: Data Data Science	h3-Open-UTIL Utilities for Large-Scale Computing	
h3-Open-AT Automatic Tuning	h3-Open-DDA: Learning Data Driven Approach		

5

h3-Open-BDEC: Two Significant Innovations

- Methods for Numerical Analysis with High-Performance/High-Reliability/Power-Saving based on the New Principle of Computing by
 - ✓ Adaptive Precision
 - ✓ Accuracy Verification
 - ✓ Automatic Tuning

h3-Open-BDEC			
Numerical Alg./Library New Principle for Computations	App. Dev. Framework Simulation + Data + Learning	Control & Utility Integration + Communications+ Utilities	
h3-Open-MATH Algorithms with High- Performance, Reliability, Efficiency	h3-Open-APP: Simulation Application Development	h3-Open-SYS Control & Integration	
h3-Open-VER Verification of Accuracy	h3-Open-DATA: Data Data Science	h3-Open-UTIL Utilities for Large-Scale Computing	
h3-Open-AT Automatic Tuning	h3-Open-DDA: Learning Data Driven Approach		

A 11/2

Approximate Computing with Low/Adaptive/Trans Precision

- Mostly, scientific computing has been conducted using FP64 (double precision, DP)
 - Sometimes, problems can be solved by FP32 (single precision, SP) or lower precision
- Lower precision may save time, energy and memory
- Approximate Computing
 - Originally for image recognition etc. where accuracy is not necessarily required
 - Also applied to numerical computations
- Computations by lower precision and by mixed precision may provide results with less accuracy

<u>P3D</u>: Steady State 3D Heat Conduction by FVM (1/2) $\nabla \cdot (\lambda \nabla \phi) + f = 0$

- 7-point Stencil
- Heterogenous Material Property
 - λ_1/λ_2 is proportional to the condition number of coefficient matrices
- Coefficient Matrix
 - Sparse, SPD
- ICCG Solver
- Fortran 90 + OpenMP
- CM-RCM Reordering

P3D: Steady State 3D Heat Conduction by FVM (2/2)

- Various Configurations
 - FP64 (Double), FP32 (Single), FP16 (Half) (just for preconditioning)
 - Matrix Storage Format (CRS, ELL, SELL-C- σ etc.)
 - CRS is applied in the present work

Results on Intel Xeon BDW $\lambda_1 = \lambda_2$ [Sakamoto et al. 2020] N=128³, CPU, Memory, \bullet : Time

14

Summary

- ICCG Solver for Heat Conduction Problems by FVM with FP64 (Double Precision) and with FP32 (Single Precision)
 - Time for ICCG, Power Consumption (W), Energy Consumption (J)
- FP64(DP)⇒FP32(SP)
 - Number of iterations increases by 20% and time for ICCG decreases by 40-45% on a single node of Intel Xeon Broadwell with 36-cores if the ratio of λ_1/λ_2 is not larger than 10⁴
 - Power consumption (W) does not change
 - Energy consumption (J) is proportional to computation time
- Results of Accuracy Verification can be found in the separate slides