

Computational Fluid Dynamics

- Computational cost of computational fluid dynamics is relatively high.
 - Fast surrogate based on deep neural networks (DNNs) for approximating steady flow simulations

Fast prediction of CFD simulation results by DNN

Flow around a circular cylinder

CFD simulation (Lattice Boltzmann methods)

$$f_i(x + c_i \Delta t, t + \Delta t) = f_i(x, t) + \Omega_i(x, t)$$

$$f_i(x + c_i \Delta t, t + \Delta t) = f_i(x, t) + \Omega_i(x, t)$$

$$\Omega_i(x, t) = -\frac{1}{\tau} (f_i(x, t) - f_i^{eq}(x, t))$$

Training

Prediction

Prediction of flow

Convolutional neural networks (CNNs) to predict simulation results

CNNs may become "faster simulator"

Datasets

- Steady flow
 - The fluid flows along the x axis around objects.

- LBM simulation results
 - D2Q9 model (9 variables is used for discrete velocity)
 - Re = 100, Domain size:1024 x 1024
 - Random sized cylinders
- Input data: 256 x 128 (clipped)
 - Training: 4608
 - Validation: 1536

Network Architecture and Training

Encoding part

Decoding part

Prediction results for single domain

Prediction by CNN with boundary exchange

- The network model trained for a single domain is applied to the decomposed subdomains to predict the simulation results in each subdomain.
- In order to maintain consistency between values in the subdomains, boundary exchange between neighbor subdomains is performed.
- CNN and boundary exchange are performed iteratively until values converge.
- This method has no limitation for device (GPU) capacity.

Prediction results over a large computational domain

Conclusion

- We have developed deep learning fast surrogate for steady flow.
 - Predicting the LBM results by using convolutional neural networks (CNNs).
 - Predicting simulation results on large domain using CNNs with boundary exchange.
 - CNN and boundary exchange are performed iteratively until values converge.
 - The proposed method has no limitation for device (GPU) capacity.
 - The predicted results using 32 subdomains are shown.
- Future works
 - Extending the proposed methods to 3D CFD simulations.