
 
 

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  62  -



 
 

 

 

 

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  63  -



 

 

 

 

 

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  64  -



 

 

 
 

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  65  -



 
 

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  66  -



Dealing with Application Development
� Now and Henceforth �

Osni Marques
Lawrence Berkeley National Laboratory

OAMarques@lbl.gov

(under the auspices of the Japan Society for the Promotion of Science)

University of Tokyo
April 25, 2012

Contents

‹ Applications and the software stack
‹ The DOE ACTS Collection
‹ Technology transition
‹ Impact of hardware evolution on libraries

2

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  67  -



HPC Applications

‹ Accelerator Science
‹ Earth Sciences
‹ Material Sciences
‹ Biology
‹ Chemistry
‹ Astrophysics

Commonalities

‹ Advancements in science and engineering
‹ Increasing demands for computational power
‹ Reliance on available computational systems,

languages, and software tools

3

Software Stack

4

APPLICATIONS

GENERAL PURPOSE TOOLS

SUPPORT TOOLS AND UTILITIES

HARDWARE
Leading technology paths (swim lanes):

‹ Multicore: maintain complex cores, and replicate (x86 and
Power7, Blue Waters, NGSC)

‹ Manycore/embedded: use many simpler, low power cores from
embedded systems (BlueGene, Dawning)

‹ GPU/Accelerator: use highly specialized processors from
gaming/graphics market space (NVidia Tesla, Cell, Intel Knights
Corner/MIC)

Risks in swim lane selection:

‹ Select too soon: users cannot follow
‹ Select too late: fall behind performance curve
‹ Select incorrectly: subject users to multiple

disruptive technology changes

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  68  -



The DOE ACTS Collection

Goal: The Advanced CompuTational Software Collection
(ACTS) makes reliable and efficient software tools more
widely used, and more effective in solving the nation�s
engineering and scientific problems

‹ Long term maintenance
‹ Independent test and evaluation
‹ Outreach and dissemination
‹ High level user support

5

Category Tool Functionalities

Numerical

Trilinos Algorithms for the iterative solution of large sparse linear systems

Hypre Algorithms for the iterative solution of large sparse linear systems (grid centric
interfaces)

PETSc Tools for the solution of PDEs (sparse linear and nonlinear systems of equations)

SUNDIALS Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic
equations, and differential algebraic equations

ScaLAPACK High performance dense linear algebra routines

SLEPc Eigensolver package built on top of PETSc

SuperLU General purpose library for the direct solution of large, sparse, nonsymmetric linear
systems

TAO Tools for the solution of optimization problems (nonlinear least squares, unconstrained
minimization, bound constrained optimization)

Code Development
Global Arrays Library that enables a shared memory view for distributed memory computers

Overture Framework for solving partial differential equations in complex geometries

Code Execution TAU Set of tools for analyzing the performance of multi language programs

Library Development ATLAS Tools for the automatic generation of optimized numerical software (dense linear
algebra)

The DOE ACTS Collection: Current Functionalities

6

Linear Solvers (Direct Methods):

‹ LU
‹ Cholesky
‹ LDLT (tridiagonal matrices)
‹ QR

Linear Solvers (Iterative Methods):

‹ CG
‹ GMRES
‹ CGS
‹ BiCGSTAB
‹ QMR
‹ SYMMLQ

‹ Various preconditioners

‹ Multigrid

‹ Nonlinear equations (Newton based)
‹ Nonlinear optimization

‹ Newton based
‹ CG
‹ Direct search

‹ ODEs
‹ Sensitivity analysis

‹ Eigenvalues
‹ Singular Value Decomposition
‹ Linear Least Squares

‹ distributed dense arrays that can be accessed through
a shared memory like style

‹ uses one sided communication model
‹ supports the creation of a Partitioned Global Address

Space (PGAS) programming model
‹ compatible with MPI

‹ solution of PDEs on a complex geometry
‹ moving geometry
‹ overlapping grid

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  69  -



Software Interfaces

7

ÝßÔÔ ÞÔßÝÍÁÙÛÌø óïô ðô ×ÝÌÈÌ ÷
ÝßÔÔ ÞÔßÝÍÁÙÎ×Ü×Ò×Ìø ×ÝÌÈÌô ùÎ±©ó³¿¶±®ùô ÒÐÎÑÉô ÒÐÝÑÔ ÷

æ
ÝßÔÔ ÞÔßÝÍÁÙÎ×Ü×ÒÚÑø ×ÝÌÈÌô ÒÐÎÑÉô ÒÐÝÑÔô ÓÇÎÑÉô ÓÇÝÑÔ ÷

æ
ÝßÔÔ ÐÜÙÛÍÊø Òô ÒÎØÍô ßô ×ßô Ößô ÜÛÍÝßô ×Ð×Êô Þô ×Þô ÖÞô ÜÛÍÝÞô ×ÒÚÑ ÷

Ü¿¬¿ Ô¿§±«¬

­¬®«½¬«®»¼ ½±³°±­·¬» ¾´±½µ­¬®½ «²­¬®«½ ÝÍÎ

Ô·²»¿® Í±´ª»®­

ÙÓÙ ÚßÝ Ø§¾®·¼ô òòò ßÓÙ» ×ÔËô òòò

Ô·²»¿® Í§­¬»³ ×²¬»®º¿½»­

� ksp_type [cg,gmres,bcgs,tfqmr,�]
� pc_type [lu,ilu,jacobi,sor,asm,�]

More advanced:

� ksp_max_it <max_iters>
� ksp_gmres_restart <restart>
� pc_asm_overlap <overlap>
� pc_asm_type

[basic,restrict,interpolate,none]

½±³³¿²¼ ´·²»

º«²½¬·±² ½¿´´

°®±¾´»³ ¼±³¿·²

(ScaLAPACK)

(PETSc)

(Hypre)

Addressing Application Performance Issues

‹ How does performance vary with different compilers?
‹ Is poor performance correlated with certain OS features?
‹ Has a recent change caused unanticipated performance?
‹ How does performance vary with MPI variants?
‹ Why is one application version faster than another?
‹ What is the reason for the observed scaling behavior?
‹ Did two runs exhibit similar performance?
‹ How are performance data related to application events?
‹ Which machines will run my code the fastest and why?
‹ Which benchmarks predict my code performance best?

(courtesy of Sameer Shende)

8

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  70  -



‹ 3D profile browser (paraprof)
‹ To use TAU, one only needs to set a couple of
environment variables and substitute the name
of the compiler with a TAU shell script

‹ Ex. Flat profile of Miranda (LLNL; hydrody
namics / Fortran + MPI) on an BG/L;

TAU: Performance Analysis

9

node, context, thread

‹ Profiling: summary statistics of performance
metrics (# of times a routine was invoked exclusive
or inclusive time or hardware counts, calltrees and
callgraphs, memory and message sizes etc)

‹ Tracing: when and where events took place along a
global timeline (timestamped log of events,
message communication events)

‹ Automatic instrumentation of source code (PDT)
‹ Runs on basically all HPC platforms

(See http://tau.uoregon.edu/tau.ppt)

Using TAU (basic level)

‹ TAU supports several measurement options (profiling, tracing,
profiling with hardware counters etc)

‹ Each measurement configuration of TAU corresponds to a unique
stub makefile and library that is generated when you configure it

‹ To instrument source code using PDT, choose an appropriate TAU
stub makefile in <arch>/lib:
û ­»¬»²ª ÌßËÁÓßÕÛÚ×ÔÛ ñ«­®ñ´±½¿´ñ°¿½µ¿¹»­ñ¬¿«ñ·íèêÁ´·²«¨ñ´·¾ñÓ¿µ»º·´»ò¬¿«ó³°·ó°¼¬
û ­»¬»²ª ÌßËÁÑÐÌ×ÑÒÍ èó±°¬Ê»®¾±­» ›Ž ø­»» ç¬¿«Á½±³°·´»®ò­¸ Š¸»´°Œ÷

‹ Use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C
compilers:
û ¬¿«Áºçðò­¸ º±±òºçð ø·²­¬»¿¼ ±º ç³°·ºçð º±±òºçðŒ÷

‹ Execute application and analyze performance data:
û °°®±º øº±® ¬»¨¬ ¾¿­»¼ °®±º·´» ¼·­°´¿§÷
û °¿®¿°®±º øº±® ÙË×÷

10

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  71  -



Software Tools for Application Development, Portability and Performance

‹ min[time_to_first_solution] (prototype)
‹ min[time_to_solution] (production)
‹ min[software development cost]
‹ max[software_life]
‹ max[resource_utilization]

‹ Outlive Complexity
Š Increasingly sophisticated models
Š Model coupling software evolution
Š Interdisciplinary

‹ Sustained Performance
Š Increasingly complex algorithms
Š Increasingly diverse architectures long term deliverables
Š Increasingly demanding applications

11

Technology Transition

12

ïðé

ïðê

ïðë

ïðì

ïðí

ïðî

ïð

îððê îððé îððè îððç îðïð îðïï îðïî îðïí îðïì îðïë îðïê îðïé îðïè îðïç îðîð

ÝÑÌÍñÓÐÐ õ ÓÐ×

ÝÑÌÍñÓÐÐ õ ÓÐ× øõ Ñ°»²ÓÐ÷

ÙÐË ÝËÜßñÑ°»²ÝÔ
Ñ® Ó¿²§½±®» ÞÙñÏô Î

Û¨¿­½¿´» õ á

Ú®¿²µ´·² øÒë÷
ïç ÌÚ Í«­¬¿·²»¼
ïðï ÌÚ Ð»¿µ

Ú®¿²µ´·² øÒë÷ õÏÝ
íê ÌÚ Í«­¬¿·²»¼
íëî ÌÚ Ð»¿µ

Ø±°°»® øÒê÷
âï ÐÚ Ð»¿µ

ÒÛÎÍÝóé
ïð ÐÚ Ð»¿µ

ÒÛÎÍÝóè
ïðð ÐÚ Ð»¿µ

ÒÛÎÍÝóç
ï ÛÚ Ð»¿µ

… and impacts to a facility like NERSC

Source: Horst Simon & Kathy Yelick

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  72  -



Parametric Research and Integration

13

APPLICATIONS

GENERAL PURPOSE TOOLS

SUPPORT TOOLS AND UTILITIES

HARDWARE

‹ Hand tuning algorithmic
parameters can be
cumbersome

‹ Auto tuning produces a
single tuned library (max
cores per node)

‹ Some applications won�t
scale �

‹ Auto tuned algorithmic
parameters

‹ Auto tuned libraries through
steering parameters
(#cores/node)

‹ Run time selection of tuned
library

‹ Binary rewriting (?)

Hardware and Programming Impacts on Libraries

‹ Workshop on Exascale Programming Challenges,
Marina del Rey, CA, July 27 29, 2011

‹ Workshop on Extreme Scale Solvers: Transition to
Future Architectures, Washington, DC, March 8 9,
2012

‹ Focus on solvers�

14

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  73  -



Current PF Machines

System Country Processor Interconnect Petaflops

K Computer Japan Fujitsu SPARC64 Tofu 11.28

Tianhe 1A China Intel x86/NVIDIA GPU Galaxy 4.70

Nebulae China Intel x86/NVIDIA GPU InfiniBand 2.98

Jaguar US AMD x86 Gemini 2.33

TSUBAME 2 Japan Intel x86/NVIDIA GPU InfiniBand 2.29

CURIE France Intel x86/NVIDIA InfiniBand 2.00

Helios Japan Intel x86 InfiniBand 1.50

Roadrunner US AMD x86/PowerXCell InfiniBand 1.37

Lomonosov Russia Intel x86/NVIDIA GPU InfiniBand 1.37

Cielo US AMD x86 Gemini 1.36

Tianhe 1A Hunan China Intel x86/NVIDIA GPU Galaxy 1.34

Pleiades US Intel x86 InfiniBand 1.32

Hopper US AMD x86 Gemini 1.29

Tera 100 France Intel x86 InfiniBand 1.25

Kraken US AMD x86 SeaStar 1.17

Oakleaf FX Japan Fujitsu SPARC64 Tofu 1.13

Sunway Blue Light China ShenWei SW1600 InfiniBand 1.07

HERMIT Germany AMD x86 Gemini 1.04

Mole 8.5 China Intel x86/NVIDIA GPU InfiniBand 1.01

JUGENE Germany PowerPC 450 Custom 1.00

15

(Michael Feldman, http://www.hpcwire.com/hpcwire/2012 04 10/the_processors_of_petascale.html)

Challenges for Next Generation Solvers (100PF � and beyond)

‹ Extreme levels of concurrency
Š millions of nodes with thousands of lightweight cores
Š hundreds of thousands of nodes with more aggressive cores

‹ Resilience and non deterministic behavior
Š hard interrupts (failure of a device)
Š soft errors (change of a data value due to faults in logic latches)

‹ Reduced memory sizes per core
Š more computation on local data, minimization of synchronization
Š shift the focus from the usual weak scaling to strong scaling

16

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  74  -



Challenges for Next Generation Solvers (100PF � and beyond)

‹ Data storage and movement
Š on a node, data movement will be much more costly, than other

operations
Š data access will be much more sensitive to data layout

‹ Deep memory hierarchies
Š solvers may need to be hierarchical (e.g. cache oblivious)

‹ Portability with performance
Š current programming possibilities are not interoperable
Š abstractions

17

Next Generation Solvers Features

‹ Communication/synchronization hiding algorithms
Š e.g. dot products interposed with matrix vector multiplies

‹ Communication/synchronization reducing algorithms
Š e.g. s step Krylov methods

‹ Mixed precision arithmetic algorithms
Š e.g. LU + triangular solves in s.p., iterative refinement in d.p.
Š reduction of memory usage

‹ Fault tolerant and resilient algorithms
Š localized checkpoints and asynchronous recovery
Š checksum

18

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  75  -



Next Generation Solvers Features

‹ Energy efficient algorithms
‹ Stochastic algorithms

Š nondeterminism in data and operations at very large scales
‹ Algorithms with reproducibility

Š bit wise identical results from one run to another may be too
costly

19

Transition to New Solvers

‹ Evolutionary algorithmic research
Š development and optimization on existing (heterogeneous)

petascale architectures
‹ Transition to new application library interfaces

Š departure from an MPI only programming model
‹ Research community interaction (longer term)

Š complexity of issues that need to be addressed
‹ Revolutionary algorithmic research

Š rethink the solver process (algorithmic and programming
approaches)

Š revisit algorithms that may not perform well on current systems
Š co development of ideas in the computational science

community

20

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  76  -



Category Tool Functionalities

Numerical

Trilinos Algorithms for the iterative solution of large sparse linear systems

Hypre Algorithms for the iterative solution of large sparse linear systems (grid centric interfaces)

PETSc Tools for the solution of PDEs (sparse linear and nonlinear systems of equations)

SUNDIALS Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic
equations, and differential algebraic equations

ScaLAPACK High performance dense linear algebra routines

SLEPc Eigensolver package built on top of PETSc

SuperLU General purpose library for the direct solution of large, sparse, nonsymmetric linear
systems

TAO Tools for the solution of optimization problems (nonlinear least squares, unconstrained
minimization, bound constrained optimization)

Code Development
Global Arrays Library that enables a shared memory view for distributed memory computers

Overture Framework for solving partial differential equations in complex geometries

Code Execution TAU Set of tools for analyzing the performance of multi language programs

Library Development ATLAS Tools for the automatic generation of optimized numerical software (dense linear algebra)

The DOE ACTS Collection: Current Functionalities

21

http://nkl.cc.u tokyo.ac.jp/VECPAR2012
http://acts.nersc.gov/events/Workshop2012

Thank you!

スーパーコンピューティングニュース� Vol. 14, No. 3　2012-  77  -




